Handbook of Modules

Master Program Materials Science

Faculty of Mathematics, Natural Sciences, and Materials Engineering

Examination regulations as of 20.11.2013

Wichtige Zusatzinformation für das WS 2020/21 aufgrund der Corona-Pandemie:

Bitte berücksichtigen Sie, dass aufgrund der Entwicklungen der Corona-Pandemie die Angaben zu den jeweiligen Prüfungsformaten in den Modulhandbüchern ggf. noch nicht aktuell sind. Welche Prüfungsformate schließlich bei welchen Modulen möglich sein werden, wird im weiteren Verlauf des Semesters geklärt und festgelegt werden. Entsprechende Informationen werden spätestens am 01.12.2020 bekannt gegeben.

Index by Groups of Modules

1) 1a Basics of Materials Science I

PHM-0144: Materials Physics (6 ECTS/LP, Wahlpflicht) *.	6
PHM-0110: Materials Chemistry (6 ECTS/LP, Wahlpflicht)	

2) 1b Basics of Materials Science II

PHM-0117: Surfaces and Interfaces (6 ECTS/LP, Wahlpflicht) *	10
PHM-0053: Chemical Physics I (6 ECTS/LP, Wahlpflicht) *	12

3) 2 Methods in Materials Science

PHM-0171: Method Course: Coordination Materials (8 ECTS/LP, Wahlpflicht)14
PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht)16
PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht) *
PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht) *20
PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht)22
PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht)24
PHM-0151: Method Course: Porous Materials - Synthesis and Characterization (8 ECTS/LP, Wahlpflicht)
PHM-0221: Method Course: X-ray Diffraction Techniques (8 ECTS/LP, Wahlpflicht) *28
PHM-0235: Method Course: 2D Materials (8 ECTS/LP, Wahlpflicht) *
PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht) *
PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht) *34
PHM-0206: Method Course: Infrared Microspectroscopy under Pressure (8 ECTS/LP, Wahlpflicht) *
PHM-0216: Method Course: Thermal Analysis (8 ECTS/LP, Wahlpflicht)
PHM-0224: Method Course: Theoretical Concepts and Simulation (8 ECTS/LP, Wahlpflicht)40
PHM-0223: Method Course: Tools for Scientific Computing (8 ECTS/LP, Wahlpflicht)42
PHM-0150: Method Course: Spectroscopy on Condensed Matter (8 ECTS/LP, Wahlpflicht) *

4) 3a Conducting and Presenting Scientific Work - Seminar

PHM-0158: Introduction to Materials (= Seminar) (4 ECTS/LP, Pflicht) *...... 46

5) 3b Conducting and Presenting Scientific Work - Laboratory Project

6) 4 Materials Science - Major Topic

a) Physics of Materials

PHM-0066: Superconductivity (6	S ECTS/LP)	48
PHM-0252: Optical Excitations in	n Materials (6 ECTS/LP, Wahlpflicht)	50
PHM-0253: Dielectric Materials	(6 ECTS/LP, Wahlpflicht)	52
PHM-0051: Biophysics and Bior	naterials (6 ECTS/LP, Wahlpflicht)	53
PHM-0059: Magnetism (6 ECTS	S/LP, Wahlpflicht)	55
PHM-0048: Physics and Techno	logy of Semiconductor Devices (6 ECTS/LP, Wahlpflicht) *	57
PHM-0049: Nanostructures / Na	nophysics (6 ECTS/LP, Wahlpflicht)	59
PHM-0203: Physics of Cells (6	ECTS/LP, Wahlpflicht)	61

b) Chemistry of Materials

PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht)	.63
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht)	.65
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht)	.67
PHM-0217: Advanced X-ray and Neutron Diffraction Techniques (6 ECTS/LP, Wahlpflicht)	69
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht) *	71
PHM-0218: Novel Methods in Solid State NMR Spectroscopy (6 ECTS/LP, Wahlpflicht)	.73
PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht)	.74

c) Engineering of Materials

PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht)	76
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht) *	78
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht)	80
PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht) *	82
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht)	84
PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht)	86

* = Im aktuellen Semester wird mindestens eine Lehrveranstaltung für dieses Modul angeboten

7) 5 Materials Science Elective Topic (PO13)

PHM-0252: Optical Excitations in Materials (6 ECTS/LP, Wahlpflicht)	88
PHM-0253: Dielectric Materials (6 ECTS/LP, Wahlpflicht)	90
PHM-0166: Carbon-based functional Materials (Carboterials) (6 ECTS/LP, Wahlpflicht)	91
PHM-0174: Theoretical Concepts and Simulation (6 ECTS/LP, Wahlpflicht)	93
PHM-0058: Organic Semiconductors (6 ECTS/LP, Wahlpflicht)	95
PHM-0066: Superconductivity (6 ECTS/LP, Wahlpflicht)	97
PHM-0060: Low Temperature Physics (6 ECTS/LP, Wahlpflicht) *	99
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht) *	101
PHM-0068: Spintronics (6 ECTS/LP, Wahlpflicht)	103
PHM-0057: Physics of Thin Films (6 ECTS/LP, Wahlpflicht)	. 105
PHM-0056: Ion-Solid Interaction (6 ECTS/LP, Wahlpflicht)	107
PHM-0069: Applied Magnetic Materials and Methods (6 ECTS/LP, Wahlpflicht)	.109
PHM-0052: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (6 ECTS/LP, Wahlpflicht) *	. 111
PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht)	113
PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht)	.115
PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht) *	. 117
PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)	119
PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht)	.121
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht)	123
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht)	125
PHM-0218: Novel Methods in Solid State NMR Spectroscopy (6 ECTS/LP, Wahlpflicht)	.127
PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht)	128
PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht)	.130
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht) *	. 132
PHM-0165: Introduction to Mechanical Engineering (6 ECTS/LP, Wahlpflicht)	134
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht)	. 135
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht)	137
PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht)	. 139

* = Im aktuellen Semester wird mindestens eine Lehrveranstaltung für dieses Modul angeboten

PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht) *	.141
PHM-0203: Physics of Cells (6 ECTS/LP, Wahlpflicht)	.143
PHM-0217: Advanced X-ray and Neutron Diffraction Techniques (6 ECTS/LP, Wahlpflicht)	145
PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht) *	.147
PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht)	.149
PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht)	.151
PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht)	153
PHM-0151: Method Course: Porous Materials - Synthesis and Characterization (8 ECTS/LP, Wahlpflicht)	.155
PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht)	157
PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht) *	. 159
PHM-0171: Method Course: Coordination Materials (8 ECTS/LP, Wahlpflicht)	161
PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht) *	.163
PHM-0206: Method Course: Infrared Microspectroscopy under Pressure (8 ECTS/LP, Wahlpflicht)	165
PHM-0216: Method Course: Thermal Analysis (8 ECTS/LP, Wahlpflicht)	167
PHM-0221: Method Course: X-ray Diffraction Techniques (8 ECTS/LP, Wahlpflicht) *	.169
PHM-0234: 2D Materials (6 ECTS/LP, Wahlpflicht)	171
PHM-0235: Method Course: 2D Materials (8 ECTS/LP, Wahlpflicht) *	173
PHM-0228: Symmetry concepts and their applications in solid state physics and materials science ECTS/LP, Wahlpflicht)	
PHM-0223: Method Course: Tools for Scientific Computing (8 ECTS/LP, Wahlpflicht)	.177
PHM-0224: Method Course: Theoretical Concepts and Simulation (8 ECTS/LP, Wahlpflicht)	.179
PHM-0225: Analog Electronics for Physicists and Materials Scientists (6 ECTS/LP, Wahlpflicht) *	181
PHM-0226: Digital Electronics for Physicists and Materials Scientists (6 ECTS/LP, Wahlpflicht)	.183
PHM-0150: Method Course: Spectroscopy on Condensed Matter (8 ECTS/LP, Wahlpflicht) *	.185

8) 6 Finals

PHM-0169: Masterthesis (26 ECTS/LP, Pflicht)	187
PHM-0170: Colloquium (4 ECTS/LP, Pflicht)	. 188

* = Im aktuellen Semester wird mindestens eine Lehrveranstaltung für dieses Modul angeboten

Module PHM-0144: Materials Ph Materials Physics	hysics	6 ECTS/LP
Version 1.1.0 (since WS15/16) Person responsible for module: apl. F	Prof. Dr. Helmut Karl	
Contents: • Electrons in solids • Phonons • Properties of metals, semicond • Application in optical, electronic • Dielectric solids, optical properties	c, and optoelectronic devices	
 structure, charge carrier statistic are capable to apply derived apply basic characteristics of semicor have the competence to apply of solids and to describe their free understand size effects on mate Integrated acquirement of soft statistics 	rms and concepts of solid state physics cs, phonons, doping and optical proper oproximations as the effective mass or t inductor materials, these concepts for the description of ele unctionalities,	he electron-hole concept to describe ectric, electro-optic and thermal properties
Remarks: compulsory module		
Workload: Total: 180 h 120 h studying of course content usir 60 h lecture and exercise course (atte	•••••••••••••••••••••••••••••••••••••••	
Conditions: basic knowledge of solid state physic	s	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Materials Phys Mode of Instruction: lecture Language: English Contact Hours: 3	ics	
Learning Outcome: see module description		

Contents:

- · Electrons in solids: Free electron gas, band structure, effective mass
- · Lattice dynamics: Phonons, phonon dispersion, acoustic and optical phonons
- · Properties of metals: Electrical conductivity, Fermi surfaces, thermal properties
- · Properties of semiconductors: Pure, intrinsic semiconductors, equilibrium conditions, doping
- Properties of dielectric materials: Propagation of electromagnetic waves, frequency dependent optical properties, polarization effects.
- Application in devices: Heterostructures, Schottky contact, pn-junction, solar cell, light emission and technological aspects

Literature:

- Hummel R. E. : Electronic Properties of Materials Springer 2001 (UP1000 H925)
- Burns G.: Solid State Physics Academic Press 1990 (UP1000 B967)
- Ashcroft N. W., Mermin N.D.: Solid State Physics (UP1000 A 824)
- Kittel C. : Introduction to Solid State Physics (UP1000 K 62)

Assigned Courses:

Materials Physics (lecture)

*(online/digital) *

Part of the Module: Materials Physics (Tutorial)

Mode of Instruction: exercise course

Language: English Contact Hours: 1

Learning Outcome:

see module description

Assigned Courses:

Materials Physics (Tutorial) (exercise course)

*(online/digital) *

Examination

Materials Physics

written exam / length of examination: 90 minutes

Examination Prerequisites:

Materials Physics

Module PHM-0110: Materials Ch Materials Chemistry	nemistry	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: Prof.		I
·		
Contents:		
 Revision of basic chemical cond Solid state chemical aspects of 	•	
 Thermoelectrics 		
 Battery electrode materia 	ls, ionic conductors	
 Hydrogen storage materia 		
 Data storage materials 		
 Phosphors and pigments 		
 Heterogeneous catalysis 		
 nanoscale materials 		
Learning Outcomes / Competences The students will	3:	
 broaden their ability to derive st about symmetry-related propert classes, be able to assess synthetic app acquire skills to perform literatu 	concepts on materials science problems, ructure-property relations of materials cor ies, chemical bonding in solids and chem roaches towards relevant materials, re research using online data bases.	nbining their extended knowledge
Total: 180 h		
60 h lecture and exercise course (atte	-	
20 h studying of course content using 20 h studying of course content using		
	gh exercises / case studies (self-study)	
Conditions: The lecture course is based on the Ba Chemie I and Chemie III (solid state of		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4 according to the examination		
	regulations of the study program	
Parts of the Module		
Part of the Module: Materials Chem	iistry	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome: see description of module		

Contents:

see description of module

Literature:

- A. R. West, Solid State Chemistry, John Wiley, Chichester.
- U. Müller, Inorganic Structural Chemistry, Wiley-VCH.
- R. Dronskowski, Computational Chemistry of Solid State Materials, Wiley VCH.
- Textbooks on Basics of Inorganic Chemistry such as J. E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie, de Gruyter, or equivalents.
- Moreover, selected reviews and journal articles will be cited on the slides.

Assigned Courses:

Materials Chemistry (lecture)

*(online/digital) *

Part of the Module: Materials Chemistry (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see description of module

Contents:

see description of module

Literature:

see associated lecture

Assigned Courses:

Materials Chemistry (Tutorial) (exercise course)

*(online/digital) *

Examination

Materials Chemistry

written exam / length of examination: 90 minutes

Examination Prerequisites:

Materials Chemistry

Module PHM-0117: Surfaces an Surfaces and Interfaces	d Interfaces	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: Prof.	Dr. Siegfried Horn	
Contents: Introduction		
The importance of surfaces and	l interfaces	
Some basic facts from solid state phy	sics	
 Crystal lattice and reciprocal lat Electronic structure of solids Lattice dynamics 	tice	
Physics at surfaces and interfaces		
 Structure of ideal and real surfa Relaxation and reconstruction Transport (diffusion, electronic) Thermodynamics of interfaces Electronic structure of surfaces Chemical reactions on solid station Interface dominated materials (on interfaces te surfaces (catalysis)	
Methods to study chemical composition	on and electronic structure, application	examples
 Scanning electron microscopy Scanning tunneling and scannir Auger – electron – spectroscop Photo electron spectroscopy 		
Learning Outcomes / Competences The students:	::	
surfaces and interfaces,acquire the skill to solve probler interface physics,	ns of fundamental research and applie certain problems autonomously based	
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug 60 h lecture and exercise course (atte	provided materials (self-study) gh exercises / case studies (self-study))
Conditions: The module "Physics IV - Solid State	Physics" of the Bachelor of Physics /	
Materials Science program should be	completed first.	
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module Part of the Module: Surfaces and Interfaces Mode of Instruction: lecture Language: English Frequency: annually Contact Hours: 3 Learning Outcome: see module description Contents: see module description Literature: • Ertl, Küppers: Low Energy Electrons and Surface Chemistry (VCH) • Lüth: Surfaces and Interfaces of Solids (Springer) · Zangwill: Physics at Surfaces (Cambridge) • Feldmann, Mayer: Fundamentals of Surface and thin Film Analysis (North Holland) • Henzler, Göpel: Oberflächenphysik des Festkörpers (Teubner) • Briggs, Seah: Practical Surface Analysis I und II (Wiley) **Assigned Courses:** Surfaces and Interfaces (lecture) *(online/digital) * Part of the Module: Surfaces and Interfaces (Tutorial) Mode of Instruction: exercise course Language: English Frequency: annually Contact Hours: 1 Assigned Courses: Surfaces and Interfaces (Tutorial) (exercise course) *(online/digital) *

Examination

Surfaces and Interfaces

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces

Module PHM-0053: Chemical Pl Chemical Physics I	hysics I	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof.	Dr. Wolfgang Scherer	
Contents: Basics of quantum chemical me Molecular symmetry and group The electronical structure of transition 	theory	
Learning Outcomes / Competence	s:	
The students:		
	d-Hückel-method and the density function	al theory,
 know the basics of group theor are able to apply the knowledge spectroscopy, and 	y, e gained through consideration of symmet	ry from vibration-, NMR-, and UV/VIS-
 are able to interpret and predic complexes. 	t the basical geometric, electronical and m skills: ability to specialize in a scientific top	
Remarks: It is possible for students to do EHM computer cluster within the scope of	calculations autonomously and analyze el	ectronical structures of molecules on a
Workload:		<u>.</u>
Total: 180 h 20 h studying of course content using	literarture (self-study)	
	igh exercises / case studies (self-study)	
20 h studying of course content using		
60 h lecture and exercise course (atte	endance)	
Conditions: It is recommended to complete the exand FP17 (Raman-spectroscopy) of t Fortgeschrittenenpraktikum".		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Phys	ics I	
Mode of Instruction: lecture		
Language: English Contact Hours: 3		
Learning Outcome:		

Contents:

- · Basics of quantum chemical methods
 - Extended Hueckel method (EHM)
 - · Modern quantum chemical methods of chemical physics
 - · Application: exemplary calculations and interpretation of simple electronical structures
- Molecular symmetry and group theory
 - Symmetry operations and matrix transformations
 - Point groups
 - Reducible and irreducible representations
 - Character tables
 - Application: infrared- and raman-spectroscopy, NMR-spectroscopy
- The electronical structure of transition metal complexes
 - Ligand field theory and angular-overlap model (AOM)
 - The physical basics of the spectrochemical series
 - Molecular orbital theory of transition metal complexes
 - Application: UV/VIS-spectroscopy, molecular magnetism

Literature:

- J. Reinhold, Quantentheorie der Moleküle (Teubner)
- H.-H. Schmidtke, Quantenchemie (VCH)
- D. C. Harris und M. D. Bertolucci, Symmetry and Spectroscopy (Dover Publications)
- D. M. Bishop, Group Theory and Chemistry (Dover Publications)
- J. K. Burdett, Chemical Bonds: A Dialog (Wiley)
- F. A. Kettle, Physical Inorganic Chemistry (Oxford University Press)
- A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburg, PA)

Assigned Courses:

Chemical Physics I (lecture)

*(online/digital) *

Part of the Module: Chemical Physics I (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Chemical Physics I (Tutorial) (exercise course)

*(online/digital) *

Examination

Chemical Physics I

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics I

Module PHM-0171 Method Cour		
	se: Coordination Materials	8 ECTS/LP
Method Course: Coordination Material	\$ 	
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D	Dr. Dirk Volkmer	
Dr. Hana Bunzen		
Contents:		
1. Synthesis of metal complexes:		
2. Analytical characterization of me	tal complexes (thermal analysis, UV/vis	spectroscopy, IR spectroscopy, X-ray
diffraction)		
3. Material composition and stabilit		
4. Functional coordination material	s (spin-crossover materials, oxygen-car	rying materials)
Learning Outcomes / Competences		
The students will learn how to:		
 prepare transition metal complex 	kes employing modern preparation tech	niques (e.g. microwave synthesis), inert
synthesis conditions (Schlenk te		
characterize coordination compo	ounds by selected analytical techniques	
 develop functional coordination r 	materials based on organic / inorganic ł	ybrid compounds,
employ X-ray diffraction methods	s for structural analysis.	
Remarks:		
ELECTIVE COMPULSORY MODULE		
Workload:		
Total: 240 h		
20 h studying of course content using	provided materials (self-study)	
80 h studying of course content throug		
20 h studying of course content using		
120 h lecture and exercise course (atte		
Conditions:		Credit Requirements:
none		-
lielle		written report (protocols)
<u> </u>		written report (protocols)
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
Frequency: each summer semester	Recommended Semester: from 2.	
Frequency: each summer semester Contact Hours:		Minimal Duration of the Module:
	from 2.	Minimal Duration of the Module:
Contact Hours:	from 2. Repeat Exams Permitted:	Minimal Duration of the Module:
Contact Hours: 6	from 2. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
Contact Hours: 6 Parts of the Module	from 2. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course:	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory course	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory course	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course:	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course: Mode of Instruction: seminar	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course: Mode of Instruction: seminar Language: English Contact Hours: 2	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course: Mode of Instruction: seminar Language: English Contact Hours: 2 Literature:	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course: Mode of Instruction: seminar Language: English Contact Hours: 2	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]

Examination Method Course: Coordination Materials (Seminar) seminar Examination Prerequisites: Method Course: Coordination Materials (Seminar)

Module PHM-0147: Method Cour Method Course: Electron Microscopy	se: Electron Microscopy	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Ferdinand Haider	
Contents:		
 Scanning electron microscopy (\$ Transmission electron microscopy) 	-	
Learning Outcomes / Competences The students:	-	
lectures to teach the theoretical		
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 90 h lecture and exercise course (atter 150 h studying of course content using		
Conditions: Recommended: knowledge of solid-sta	ate physics, reciprocal lattice	Credit Requirements: regular participation, oral presentation (10 min), written report (one report per group)
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	Electron Microscopy	

Contents:

SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Electron Microscopy report Examination Prerequisites: Method Course: Electron Microscopy

Person responsible for module: Andreas Hörner Contents: A nalog technique, transistor and opamp circuits [5] A baolean algebra and logic [4] Digital electronics and calculation circuits [6] Digital electronics and calculation circuits [6] Doperational amplifiers [8] Commended Semester Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h Dig h edure and exercise course (attendance) Hou h lecture and exercise course (attendance) Conditions: none Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Module PHM-0146: Method (and Materials Scientists	Course: Electronics for Physicists	8 ECTS/L
Person responsible for module: Andreas Hörner Contents: 1. Basics in electronic and electrical engineering [4] 2. Quadrupole theory [2] 3. Analog technique, transistor and opamp circuits [5] 4. Boolean algebra and logic [4] 5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] 12. Examing Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workoat: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Recommended Semester: rime from 1. regulations of the study program Recording to the examination regulations of the study program Reparts of the Module Parts of the Module	Method Course: Electronics for P	hysicists and Materials Scientists	
Contents: 1. Basics in electronic and electrical engineering [4] 2. Quadrupole theory [2] 3. Analog technique, transistor and opamp circuits [5] 3. Analog technique, transistor and opamp circuits [5] 4. Boolean algebra and logic [4] 5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have skeptise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (Version 1.1.0 (since SoSe15)		
	Person responsible for module: A	ndreas Hörner	
2. Quadrupole theory [2] 3. Analog technique, transistor and opamp circuits [5] 4. Boolean algebra and logic [4] 5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have septritise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Repeat Exams Permitted: 7 Repat E	Contents:		
 Analog technique, transistor and opamp circuits [5] Boolean algebra and logic [4] Digital electronics and calculation circuits [6] Microprocessors and Networks [4] Basics in Electronic [8] Implementation of transistors [8] Operational amplifiers [8] Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 110 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. Credit Requirements: uriten report (one per group) Frequency: each semester Repeat Exams Permitted: according to the examination regulations of the study program 	1. Basics in electronic and ele	ctrical engineering [4]	
 Boolean algebra and logic [4] Digital electronics and calculation circuits [6] Microprocessors and Networks [4] Basics in Electronic [8] Implementation of transistors [8] Operational amplifiers [8] Digital electronics [8] Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: mone Repeat Exams Permitted:	2. Quadrupole theory [2]		
5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have scientists in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture) course content using provided materials (self-study) Conditions: none			
 Microprocessors and Networks [4] Basics in Electronic [8] Implementation of transistors [8] Operational amplifiers [8] Operational amplifiers [8] Operational amplifiers [8] Operational amplifiers [8] Digital electronics [8] Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. Credit Requirements: written report (one per group) Frequency: each semester Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module			
7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: credit Requirements: none mitmal Duration of the Module: Frequency: each semester Repeat Exams Permitted: rom 1. according to the examination regulations of the study program Parts of the Module according to the examination regulations of the study pro			
8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. contact Hours: 7 Repare Exams Permitted: according to the examination regulations of the study program Parts of the Module		orks [4]	
9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have spertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Recommended Semester: from 1. Credit Requirements: written report (one per group) Frequency: each semester Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module			
10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. 1 semester[s] Contact Hours: 7 Parts of the Module		rs [8]	
11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: mone none Kritten report (one per group) Frequency: each semester Repeat Exams Permitted: none according to the examination regulations of the study program Parts of the Module Parts of the Module			
Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital electronics, • have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: Credit Requirements: mone written report (one per group) Frequency: each semester Recommended Semester: Minimal Duration of the Module: from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module program		At [0]	
The students: know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. Contact Hours: 7 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module			
laboratory, have skills in easy circuit design, measuring and control technology, analog and digital electronics, have expertise in independent working on circuit problems. They can calculate and develop easy circuits. Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Repeat Exams Permitted: 7 Repeat Exams Permitted: 7 according to the examination regulations of the study program Parts of the Module	Learning Outcomes / Competer The students:	ices:	
Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. Contact Hours: 7 Repeat Exams Permitted: according to the examination regulations of the Module	have skills in easy circuit de		
Attendance in the Method Course: Electronics for Physicists and Materials Scientists (combined lab course AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists. Workload: Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. Contact Hours: 7 Repeat Exams Permitted: according to the examination regulations of the Module		ULE	
Total: 240 h 100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Frequency: each semester Recommended Semester: from 1. Contact Hours: 7 Parts of the Module		-	-
100 h lecture and exercise course (attendance) 140 h studying of course content using provided materials (self-study) Conditions: none Credit Requirements: written report (one per group) Frequency: each semester Recommended Semester: from 1. Minimal Duration of the Module: 1 semester[s] Contact Hours: 7 Repeat Exams Permitted: according to the examination regulations of the study program Image: Contact Hours: Contact Hou	Workload:		
140 h studying of course content using provided materials (self-study) Credit Requirements: written report (one per group) Conditions: written report (one per group) Frequency: each semester Recommended Semester: from 1. Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Parts of the Module	Total: 240 h		
Conditions: Credit Requirements: none written report (one per group) Frequency: each semester Recommended Semester: Minimal Duration of the Module: from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: 7 according to the examination regulations of the study program Parts of the Module			
none written report (one per group) Frequency: each semester Recommended Semester: from 1. Minimal Duration of the Module: 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Image: Contact Hours in the study program Parts of the Module Parts of the Module Image: Contact Hours in the study program Image: Contact Hours in the study program	140 h studying of course content	using provided materials (self-study)	
Frequency: each semester Recommended Semester: Minimal Duration of the Module: from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: 7 according to the examination regulations of the study program Parts of the Module	Conditions:		Credit Requirements:
from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: 7 according to the examination regulations of the study program	none		written report (one per group)
from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: 7 according to the examination regulations of the study program	Frequency: each semester	Recommended Semester:	Minimal Duration of the Module:
Contact Hours: Repeat Exams Permitted: 7 according to the examination regulations of the study program			
7 according to the examination regulations of the study program Parts of the Module	Contact Hours:	Popost Exame Pormittade	
Parts of the Module			
Parts of the Module			
Part of the Module: Method Course: Electronics for Physicists and Materials Scientists	Parts of the Module		
	Part of the Module: Method Cou	urse: Electronics for Physicists and Mat	erials Scientists
	Mode of Instruction: lecture		

Contact Hours: 4

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (lecture)

*(online/digital) *

Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course) Mode of Instruction: laboratory course

Language: English Contact Hours: 3

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship) *(online/digital) *

Examination

Method Course: Electronics for Physicists and Materials Scientists oral exam / length of examination: 30 minutes **Examination Prerequisites:** Method Course: Electronics for Physicists and Materials Scientists **Description:**

Ausnahmefall SoSe 2020: schriftliche Prüfung

Materials Method Course: Functional Silicate-an	se: Functional Silicate-analogous	8 ECTS/L
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [Dr. Henning Höppe	
Contents:		
	tional materials according to the topics:	
 Silicate-analogous compounds Luminescent materials / phosphe Pigments Characterization methods: XRD, 	ors spectroscopy (luminescence, UV/vis, F	T-IR), thermal analysis
Learning Outcomes / Competences The students will know how to:		-
 apply classical and modern prep autoclave reactions, use of silica 	heres (e.g. reducing, inert conditions), s from single-crystal data,	ion, sol-gel reaction, precipitation,
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 120 h lecture and exercise course (atte 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	provided materials (self-study) literarture (self-study)	
Conditions: Recommended: attendance to the lect	ure "Advanced Solid State Materials"	Credit Requirements: written report (protocol)
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 6

Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- · describe and classify these structures properly.

Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

Assigned Courses:

Method Course: Functional Silicate-analogous Materials (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: Functional Silicate-analogous Materials

seminar

Examination Prerequisites:

Method Course: Functional Silicate-analogous Materials

Module PHM-0148: Method C Method Course: Optical Properties	ourse: Optical Properties of Solids of Solids	8 ECTS/LP
Version 1.2.0 (since SoSe15) Person responsible for module: Pro	of. Dr. Joachim Deisenhofer	
Contents: Electrodynamics of solids		
Maxwell equationsElectromagnetic wavesRefraction and interference,	Fresnel equations	
FTIR spectroscopy		
 Fourier transformation Michelson-Morley and Genze Sources and detectors 	el interferometer	
Terahertz Time Domain spectrosco	рру	
Generation of pulsed THz raGated detection, Austin swite		
Elementary excitations in solid mat	erials	
 Rotational-vibrational bands Infrared-active phonons Interband excitations Crystal-field excitations 		
Learning Outcomes / Competene The students:	ces:	
Remarks:		
Workload: Total: 240 h 30 h studying of course content us 90 h studying of course content thr 30 h studying of course content us 90 h lecture and exercise course (a	ough exercises / case studies (self-study) ing literarture (self-study)	
Conditions: Recommended: basic knowledge i electrodynamics and optics	n solid-state physics, basic knowledge in	Credit Requirements: written report
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Eugene Hecht, Optics, Walter de Gruyter

Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Optical Properties of Solids report Examination Prerequisites: Method Course: Optical Properties of Solids

Module PHM-0149: Method Cour Method Course: Methods in Biophysic		8 ECTS/L
Version 1.0.0 (since SoSe15)		
Person responsible for module: Dr. Ste	efan Thalhammer	
Contents:		
Unit radiation biophysics		
 Concepts in radiation protection Low-dose irradiation biophysics DNA repair dynamics of living ce Confocal scanning laser microsometry 	U U	
Unit microfluidic		
Microfluidic systemsAccoustic driven microfluidicsCalculation of microfluidic proble	ems	
Unit analysis		
Learning Outcomes / Competences: The students:		
technologies of microfluidic anal	mmun-histochemical staining procedu confocal scanning microscopy, oblems on small length scales,	
Remarks: ELECTIVE COMPULSORY MODULE		
The course will partly take place at the	Heimholtz Center Munich.	
Workload: Total: 240 h		
Conditions:		Credit Requirements:
Attendance of the lecture "Biophysics a	and Biomaterials"	1 written lab report
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English	Methods in Biophysics	

Part of the Module: Method Course: Methods in Biophysics (Practical Course) Mode of Instruction: laboratory course Language: English Contact Hours: 4

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

Examination

Method Course: Methods in Biophysics report

Examination Prerequisites:

Method Course: Methods in Biophysics

Module PHM-0151: Method Course: Porous Materials - Synthesis and Characterization Method Course: Porous Materials - Synthesis and Characterization		8 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Dirk Volkmer	
Contents: Synthesis of porous functional materia Frameworks)	als (e.g. aerogels, mesoporous silica mat	erials, zeolites, Metal-Organic
Characterization methods		
 Structure and composition (XRI Thermal analysis (TGA) Adsorption and diffusion (BET,) Catalytic properties (GC/MS, TF 	pore size distribution, pulse chemisorptio	n)
Learning Outcomes / Competences The students will learn how to		
use modern solid state preparatemploy analytical methods dedited	ion techniques (e.g. hydrothermal, solvo cated to porous materials.	thermal, microwave synthesis),
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 120 h internship / practical course (att 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using	gh exercises / case studies (self-study) literarture (self-study)	
Conditions: Recommended: lecture Functional Porous Materials		Credit Requirements: written report (editing time 3 weeks) + written exam
		Please note that final grade of the Method Course consists of the maximum point score of of the exam and the grade of the report of the practical part which are weighted (40:60).
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Porous Materials Synthesis and Characterization (Practical Course) Mode of Instruction: laboratory course Language: English

Contact Hours: 4

Examination

Method Course: Porous Materials Synthesis and Characterization

written exam / length of examination: 45 minutes

Examination Prerequisites:

Method Course: Porous Materials Synthesis and Characterization

Module PHM-0221: Method Cou Method Course: X-ray Diffraction Tec	Irse: X-ray Diffraction Techniques	8 ECTS/LP
Version 1.0.0 (since WS15/16) Person responsible for module: Prof. PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
Contents: Subjects of the practical training and of X-ray diffraction techniques:	the accompanying lecture are the theoret	ical basics and the practical application
Data collection and reduction techniq	ues	
Symmetry and space group determin		
Structural refinements: • The Rietveld method • Difference Fourier synthesis		
Structure determination: • Patterson method • Direct methods		
Interpretation of structural refinement	results	
Errors and Pitfalls: twinning and disor	der	
employing X-ray diffraction techhave the skill to perform under	guidance phase-analyses and X-ray struc s-on the structure-property relationships o	ture determinations
Workload: Total: 240 h 30 h studying of course content using 30 h studying of course content using 90 h studying of course content throu 90 h lecture and exercise course (atte	literarture (self-study) gh exercises / case studies (self-study)	
Conditions: none		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: X-ray Diffraction Techniques

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Assigned Courses:

Method Course: X-ray Diffraction Techniques (lecture)

*(online/digital) *

Part of the Module: Method Course: X-ray Diffraction Techniques (Practical Course)

Mode of Instruction: laboratory course Language: German Contact Hours: 4

Assigned Courses:

Method Course: X-ray Diffraction Techniques (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: X-ray Diffraction Techniques

written exam / length of examination: 90 minutes

Module PHM-0235: Method Cour Method Course: 2D Materials	se: 2D Materials	8 ECTS/LP
Version 1.0.1 (since SoSe18)	Ne llukert I Kronner	
Person responsible for module: Prof. D	r. Hubert J. Krenner	
 Contents: Fabrication of monolayers of 2D Characterization of the structural Modelling of selected physical pr 	, optical and vibrational properties of 2	D Materials
• • • • • •	tion of fabrication of selected monolaye tion of basic characterization methods n methods	
Workload: Total: 240 h 90 h lecture and exercise course (atter 30 h studying of course content using p 30 h studying of course content using l 90 h studying of course content throug	provided materials (self-study) iterarture (self-study)	
Conditions: Basic knowledge of solid state physics	, optics and quantum mechancis	Credit Requirements: written report, editing time 3 weeks, max. 30 pages
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	2D Materials	
Assigned Courses:		
Method Course: 2D Materials (lecture *(online/digital) *	ə)	
Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4		
Assigned Courses: Method Course: 2D Materials (Practi	ical Course) (internship)	
*(online/digital) *		

Examination Method Course: 2D Materials report Description: written report

Module PHM-0153: Method Cour ting Materials Method Course: Magnetic and Superco		8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	or. Philipp Gegenwart	
Contents: Methods of growth and characterization	n:	
Sample preparation (bulk materials and	d thin films), e.g.,	
arcmeltingflux-growthsputtering and evaporation		
Sample characterization, e.g.,		
 X-ray diffraction electron microscopy, scanning tu magnetic susceptibility, electrical specific heat 	• • • • •	
Learning Outcomes / Competences: The students		
thin-film growth, X-ray diffractionare trained in planning and perfolearn to evaluate and analyze the	, magnetic susceptibility, dc-conductivity	problems in experimental solid state
Workload: Total: 240 h 90 h lecture and exercise course (atter 30 h studying of course content using p 90 h studying of course content throug 30 h studying of course content using l	provided materials (self-study) h exercises / case studies (self-study)	
Conditions: Recommended: basic knowledge in so mechanics	lid state physics and quantum	Credit Requirements: presentation and written report on the experiments (editing time 3 weeks, max. 30 pages)
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English	Magnetic and Superconducting Mate	erials

Contact Hours: 2

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (lecture)

*(online/digital) *

Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: Magnetic and Superconducting Materials report Examination Prerequisites: Method Course: Magnetic and Superconducting Materials

Module PHM-0154: Method Cour Spectroscopy Method Course: Modern Solid State N		8 ECTS/LP
Version 2.0.0 (since SoSe17) Person responsible for module: Prof. I	Dr. Leo van Wüllen	
Contents:		
Physical foundations of NMR spectros		
Internal interactions in NMR spectrosc	ору	
 Chemical shift interaction Dipole interaction and 		
Quadrupolar interaction		
Magic Angle Spinning techniques		
Modern applications of NMR in materia	als science	
Experimental work at the Solid-State N	IMR spectrometers, computer-aided an	alysis and interpretation of acquired data
Learning Outcomes / Competences: The students:		
gain basic practical knowledge c	sical foundations of modern Solid-State of operating a solid-state NMR spectrom erform, and analyze modern solid-state aterials.	neter,
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 30 h studying of course content using 90 h studying of course content throug 30 h studying of course content using 90 h lecture and exercise course (atter	h exercises / case studies (self-study) provided materials (self-study)	
Conditions: The attendance of the lecture "NOVEL SPECTROSCOPY" is highly recomme		Credit Requirements: Bestehen der Modulprüfung
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: seminar Language: English	Modern Solid State NMR Spectrosco	рру

Contact Hours: 2

Literature:

- M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.
- H. Günther NMR spectroscopy, Wiley, 2001.
- M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- D. Canet, NMR concepts and methods, Springer, 1994.

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (seminar)

*(online/digital) *

Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Literature:

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: Modern Solid State NMR Spectroscopy

report / work period for assignment: 2 weeks

Examination Prerequisites:

Method Course: Modern Solid State NMR Spectroscopy

Module PHM-0206: Method Cour under Pressure Method Course: Infrared Microspectros		8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. D	or. Christine Kuntscher	
Contents: Electrodynamics of solids		
Maxwell equations and electromagneti	c waves in matter	
Optical variables		
Theories for dielectric function:		
i. Free carriers in metals and semiconc	luctors (Drude)	
ii. Interband absorptions in semiconductioniii. Vibrational absorptionsiv. Multilayer systems	ctors and insulators	
FTIR microspectroscopy		
Components of FTIR spectrometers i. Light sources ii. Interferometers iii. Detectors		
Microscope components High pressure experiments Equipment	s	
Pressure calibration		
Experimental techniques under high pr i. IR spectroscopy ii. Raman scattering iii. Magnetic measurements iv. Transport measurements	essure	
Learning Outcomes / Competences:		
The students		
Learn about the basics of the light inter	raction with various materials and the fur	ndamentals of FTIR microspectroscopy
Are introduced to the high pressure eq	uipments used in infrared spectroscopy,	
Learn to carry out infrared microspectr	oscopy experiments under pressure,	
Learn to analyze the measured optical	spectra.	
Workload: Total: 240 h		
Conditions: none		Credit Requirements: Written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure

Mode of Instruction: lecture

Language: German

Contact Hours: 2

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (lecture)

*(online/digital) *

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure (Practical Course)

Mode of Instruction: laboratory course Language: German Contact Hours: 4

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: Infrared Microspectroscopy under Pressure report

Module PHM-0216: Method Cou Method Course: Thermal Analysis	rse: Thermal Analysis	8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. Dr. Robert Horny	Dr. Ferdinand Haider	
Contents: Methods of thermal analysis: - Differential Scanning Calorimetry: D - Thermo-gravimetric Analysis: TG - Dilatometry: DIL - Dynamic-mechanical Analysis: DMA Advanced Methods: - Modulated Differential Scanning Cal - Evolved Gas Analysis: EGA GCMS, Learning Outcomes / Competences The students: • get to know the basic principles • learn about fundamental therma processes (metals, polymers, c	orimetry: MDSC FTIR s: of thermal analysis al processes in condensed matter ,e.g.	phase transitions and relaxation
	plex experiments and the usage of adv	anced measurement techniques
Workload: Total: 240 h 90 h lecture and exercise course (atte 90 h studying of course content throu 30 h studying of course content using 30 h studying of course content using	gh exercises / case studies (self-study) literarture (self-study)	
Conditions: Recommended: basic knowledge in s	itions: nmended: basic knowledge in solid-state physics	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course Mode of Instruction: lecture Lecturers: Prof. Dr. Ferdinand Haide		

Part of the Module: Method Course: Thermal Analysis (Practical Course)

Mode of Instruction: laboratory course

Language: English

Language: English Contact Hours: 2

Contact Hours: 4

Examination Method Course: Thermal Analysis report

Module PHM-0224: Method Course mulation Method Course: Theoretical Concepts		8 ECTS/LF
Version 1.0.0 (since WS15/16) Person responsible for module: Prof. D	r. Liviu Chioncel	,
	ods (computational algorithms) for class . The following common applications wil	
 Monte-Carlo integration, stochast Feynman path integrals: the conr Oder and disorder in spin system 	nection between classical and quantum	systems
The students are able to present	ining numerical solutions to problems to (graphically), discuss and analyze the r formulatind and carrying out a collabora	results
Remarks: The number of students will be limited t	to 8.	
Workload: Total: 240 h 90 h preparation of presentations (self- 60 h preparation of written term papers 60 h studying of course content (self-st 90 h (attendance)	(self-study)	
Conditions: Knowledge of the programming langua taught in the modul PHM-0041. Require in physics: Classical Mechanics (Newto Thermodynamics and Quantum Mecha	ements to understand basic concepts on, Lagrange), Electrodynamics,	Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

Contents:

Concepts of classical and quantum statistical physics:

- the meaning of sampling, random variables, ergodicity
- equidistribution, pressure, temperature
- · path integrals, quantum statistics, enumeration, cluster algorithms

Literature:

- 1. Werner Krauth, Algorithms and Computations (Oxford University Press, 2006)
- 2. R. H. Landau, A Survey of Computational Physics (Princeton Univ. Press, 2010)

Part of the Module: Method Course: Theoretical Concepts and Simulation (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Contents:

see above

Literature:

see above

Examination

Method Course: Theoretical Concepts and Simulation

report / work period for assignment: 4 weeks

Description:

The requirement for the credit points is based on a programming project carried out in a team of 2-3 students. The final report contains the formulation and a theoretical introduction into the problem, the numerical implementation, and the presentation of the results.

Module PHM-0223: Method Cour	se: Tools for Scientific Compu-	8 ECTS/LP
ting Method Course: Tools for Scientific Co	omputing	
Version 1.1.0 (since SoSe18) Person responsible for module: Prof. D	Dr. Gert-Ludwig Ingold	
	are taught in this module and applied particular programming language, Pyth	
 numerical libraries like NumPy a visualisation of numerical results use of a version control system I testing of code profiling documentation of programs 	•	re work
 They are able to visualize the res The students know examples of The students know methods for run-time problems. The students know a distributed 	ring a physical problem of some comple sults and to adequately document their numerical libraries and are able to app quality assurance like the use of unit te version control system and are able to cal experience in a collaborative project	ly them to solve scientific problems. sts. They know techniques to identify
Remarks:		
The number of students will be limited	to 12.	
Workload: Total: 240 h 60 h studying of course content (self-s 90 h (attendance) 30 h preparation of presentations (self- 60 h preparation of written term papers	-study)	
Conditions: Knowledge of the programming langua taught in the module PHM-0041 "Einfü Physiker und Materialwissenschaftler".	hrung in das Programmieren für	Credit Requirements: Bestehen der Modulprüfung
Frequency: irregular	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	<u></u>	
Part of the Module: Method Course: Mode of Instruction: lecture Language: English / German Contact Hours: 2	Tools for Scientific Computing	

Learning Outcome:

- The students know the numerical libraries NumPy and SciPy and selected tools for the visualization of numerical results.
- The students know fundamental techniques for the quality assurance of programs like the use of unit tests, profiling and the use of the version control system git. They are able to adequately document their code.

Contents:

- numerical libraries NumPy and SciPy
- graphics with matplotlib
- · version control system Git and workflow for Gitlab/Github
- unit tests
- profiling
- · documentation using docstrings and Sphinx

Literature:

• A. Scopatz, K. D. Huff, Effective Computation in Physics (O'Reilly, 2015)

Part of the Module: Method Course: Tools for Scientific Computing (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Learning Outcome:

- The students are capable of solving a physical problem of some complexity by means of numerical techniques and to visualize the results.
- They have gained some experience in the application of methods for quality assurance of their code and are able to appropriately document their programs.
- The students are able to work in a team and know how to make use of tools like Gitlab/Github.
- The students are able to present the status of their work, to critically assess it and to accept suggestions from others.

Contents:

The tools discussed in the lecture will be applied to specific scientific problems by small teams of 2-3 students under supervision. The teams regularly inform the other teams in oral presentations on their progress, the tools employed as well as encountered problems and their solution.

Examination

Method Course: Tools for Scientific Computing

report / work period for assignment: 4 weeks

Description:

The requirement for credit points is based on a scientific programming project carried out in a small team of 2-3 students. The work will be judged on the basis of a joint final report and the contributions of the individual students as documented in the team's Gitlab project. The final report should contain an explanation of the scientific problem and its numerical implementation as well as a presentation of results. The code should be appropriately documented and tested.

Module PHM-0150: Method Course Matter Method Course: Spectroscopy on Cond		8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Dr. Ste	phan Krohns	
Contents: Dielectric Spectroscopy [8] • Methods • Cryo-techniques • Measurement quantities • Relaxation processes • Dielectric phenomena		
 Ferroelectric Materials [7] Mechanism of ferroelectric polari Hysteresis loop measurements Dielectric spectroscopy 	zation	
Glassy Matter [8]IntroductionGlassy phenomenaDielectric spectroscopy		
 Multiferroic Materials [7] Introduction Microscopic origins of multiferroid Pyrocurrent measurements Dielectric spectroscopy 	city	
are instructed in experimental meare trained in planning and perfodata,	f dielectric spectroscopy and the phenor ethods for the investigation of the dielect rming complex experiments. They learn n experimental solid state physics, inclu	tric properties of condensed matter, to evaluate and analyze the collected
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h		
Conditions: Recommended: basic knowledge in so physics of glasses and supercooled liq		Credit Requirements: written report on the experiments (editing time 2 weeks)
Frequency: irregular (usu. winter semester) Contact Hours:	Recommended Semester: from 1. Repeat Exams Permitted:	Minimal Duration of the Module: 1 semester[s]
6	according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Spectroscopy on Condensed Matter

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

- N.W. Ashcroft, N.D. Mermin, Festkörperphysik (Oldenbourg)
- Ch. Kittel, Einführung in die Festkörperphysik (Oldenbourg)
- C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization (Elsevier)
- J. R. Macdonald, Impedance Spectroscopy (Wiley)
- H. Scholze, Glas (Springer)
- S.R. Elliott, Physics of Amorphous Materials (Longman)
- R. Zallen, The Physics of Amorphous Solids (Wiley)

Assigned Courses:

Method Course: Spectroscopy on Condensed Matter (lecture)

**

Part of the Module: Method Course: Spectroscopy on Condensed Matter (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Spectroscopy on Condensed Matter (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: Spectroscopy on Condensed Matter

written exam / length of examination: 120 minutes

Examination Prerequisites:

Method Course: Spectroscopy on Condensed Matter

Module PHM-0158: Introduction Introduction to Materials	to Materials (= Seminar)	4 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Ferdinand Haider	
Contents: Varying topics for each year, giving ar modern materials.	n overview into scope, application, req	uirements and preparation of all types of
Learning Outcomes / Competences	:	
 know the major principles, applied 	cations and processes of modern mate pile knowledge for examples of materi udience.	
Remarks: COMPULSORY MODULE		
Workload: Total: 120 h		
Conditions: Recommended: basic knowledge in m	aterials science	Credit Requirements: regular participation, oral presentation with term paper (30 - 45 minutes)
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 2	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Introduction to Mode of Instruction: seminar Language: English Contact Hours: 2	Materials (Seminar)	
Literature: specific for each topic, to be gathe	red by the students	
Assigned Courses:		
Introduction to Materials (Seminar) *(online/digital) *	(seminar)	
Examination Introduction to Materials presentation		

Examination Prerequisites:

Introduction to Materials

Module PHM-0159: Laboratory Project Laboratory Project		10 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Dirk Volkmer	
Contents: Experimental or theoretical work in a 3 months.	laboratory / research group in the Instit	ute of Physics. Has to be conducted within
Learning Outcomes / Competence The students:	s:	
research groups,experience the day to day life i		oject in the existing laboratories within the thesis.
Remarks: The Laboratory Project will be offered	d in SoSe 2020 as soon as the current s	situation allows.
COMPULSORY MODULE		
Workload: Total: 300 h		
Conditions: Recommended: solid knowledge in (Materials Science, both experimenta		Credit Requirements: 1 written report (editing time 2 weeks)
Frequency: each semester Siehe Bemerkungen	Recommended Semester: from 3.	Minimal Duration of the Module: 0 semester[s]
Contact Hours: 8	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Laboratory Pro Mode of Instruction: internship Language: English Contact Hours: 8	oject	
Literature: • Various		

Examination Laboratory Project project work Examination Prerequisites: Laboratory Project

Module PHM-0066: Supercond	luctivity	6 ECTS/LP
Superconductivity		
Version 1.0.0 (since WS11/12)		
Person responsible for module: PD		
 Contents: Introductory Remarks and Lite 		
-	of the Superconducting State, an Overview	
•	namics and Electrodynamics of the SC	
Ginzburg-Landau Theory	-	
 Microscopic Theories 		
	the Nature of the Superconducting State	
Josephson-Effects		
High Temperature Supercond Application of Superconduction		
Application of Superconductiv		
Learning Outcomes / Competenc The students:	es:	
will get an introduction to sup		
	ental results they will learn the fundamental	
	mportant technical applications of supercon n to the basic concepts of the main phenon	-
	explain the experimental observations.	
	sive list of further reading will be supplied.	
	3	
Workload:		
Total: 180 h		
60 h lecture and exercise course (a	ttendance)	
-	bugh exercises / case studies (self-study)	
20 h studying of course content usi		
20 h studying of course content usi		
Conditions:		
 Physik IV – Solid-state physic 	s	
 Theoretical physics I-III 		
Frequency: every 3rd semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Superconduc	tivity	
Mode of Instruction: lecture	-	
Language: English		
Contact Hours: 4		
Learning Outcome:		
see module description		
Contents:		

Contents:

see module description

- W. Buckel, Supraleitung, 5. Auflage (VCH, Weinheim, 1994)
- W. Buckel und R. Kleiner, Supraleitung, 6. Auflage (WILEY-VCH, Weinheim, 2004)
- M. Tinkham, Introduction to Superconductivity, 2nd Edition (McGraw-Hill, Inc., New York, 1996, Reprint by Dover Publications Inc. Miniola , 2004)
- Weitere Literatur wird in der Vorlesung angegeben

Examination

Superconductivity

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Superconductivity

Remarks: No exam in this module can be take been passed successfully. Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Basic knowledge of electrodynamics a Frequency: each summer semester Contact Hours: 4 Parts of the Module	gh exercises / case studies (self-study) provided materials (self-study) ndance)	and Optical Materials" had already Minimal Duration of the Module: 1 semester[s]
No exam in this module can be take been passed successfully. Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Basic knowledge of electrodynamics a Frequency: each summer semester	literarture (self-study) ph exercises / case studies (self-study) provided materials (self-study) ndance) and atomic/solid state physics. Recommended Semester: from 2.	Minimal Duration of the Module:
No exam in this module can be take been passed successfully. Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (attent Conditions: Basic knowledge of electrodynamics a	literarture (self-study) gh exercises / case studies (self-study) provided materials (self-study) ndance) and atomic/solid state physics.	and Optical Materials" had already
No exam in this module can be take been passed successfully. Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using	literarture (self-study) jh exercises / case studies (self-study) provided materials (self-study)	and Optical Materials" had already
No exam in this module can be take	n, if the module PHM-0160 "Dielectric	and Optical Materials" had already
competence to select materials for am		
	ectromagnetic wave propagation in solid citations in solids. They are able to analy	_
 Prof. Dr. Istvan Kézsmárki Contents: Fundamentals of electromagneti absorption) Spectroscopic techniques: Fouri Anisotropic media, Birefringence 	ic wave propagation in homogenous med er-Transform-Spectroscopy, Time-doma e, Quadruchroism, linear optics ctors/insulators, molecular materials, me excitons, luminescence centers emitting devices	in THz Spectroscopy, Ellipsometry
Person responsible for module: Prof. [Dr. Joachim Deisenhofer	
Optical Excitations in Materials Version 1.1.0 (since SoSe20)		

Language: English Contact Hours: 4

ECTS Credits: 6.0

Examination

Optical Excitations in Materials

written exam / length of examination: 90 minutes

Description:

Exceptional regulation in the summer term 2020: Oral Exam (30 Minutes)

Module PHM-0253: Dielectric Ma Dielectric Materials	terials	6 ECTS/LI
Version 1.0.0 (since SoSe20) Person responsible for module: Dr. Ste PD Dr. Peter Lunkenheimer	phan Krohns	I
 measurements Dynamic processes in dielectric r Dielectric properties of disorderee Charge transport: hopping condu lonic conductivity: conductivity m devices Maxwell-Wagner relaxations: equimaterials 	ies, broadband dielectric spectroscopy, m materials: relaxation processes, phenom d matter: liquids, glasses, plastic crystals activity, universal dielectric response echanism, dielectric properties, advance uivalent-circuits, applications (supercapa erties (relaxor ferroelectric, ferroelectric,	enological models s ed electrolytes for energy-storage citors), colossal-dielectric-constant
	ectromagnetic wave propagation and hav ey are able to analyze materials requirem oplications.	-
Workload: Total: 180 h 60 h lecture and exercise course (atten 20 h studying of course content using p 20 h studying of course content using l 80 h studying of course content throug	provided materials (self-study) iterarture (self-study)	
Conditions: Basic knowledge of solid state physics		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	·	
Part of the Module: Dielectric Materi Mode of Instruction: lecture Lecturers: Dr. Stephan Krohns, PD Dr Language: English / German		

Language: English / German

Examination

Dielectric Materials Dielectric Materials

presentation / length of examination: 45 minutes

Examination Prerequisites:

Dielectric Materials

Module PHM-0051: Biophysi Biophysics and Biomaterials	cs and Biomaterials	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: D	r. Stefan Thalhammer	
Contents: • Radiation Biophysics • Microfluidics • Membranes • Membranal transport		
Learning Outcomes / Competen The students:	ces:	
 learn models of the (bio)poly neuronal networks, adapt skills in the independent translate a biological oberset Integrated acquirement of statement of statement	and phenomena of biological physics, ymer-theory, microfluidic, radiation biophys ent processing of problems and deal with c ervation into a physical question. oft skills: autonomous working with special pacity for teamwork, ability to document ex	surrent literature. They will be able to ist literature in english, acquisition of
	sing provided materials (self-study) rough exercises / case studies (self-study)	
Conditions: Mechanics, Thermodynamics, Sta Molecular Biology	tistical Physics, basic knowledge in	
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Biophysics Mode of Instruction: lecture Language: English Contact Hours: 3	and Biomaterials	
Learning Outcome: see module description		

ontent	S:
•	Radiation Biophysics
•	 Radiation sources Interaction of radiation with biological matter Radiation protection principles Low dose radiation LNT model in radiation biophysics Microfluidics
	 Life at Low Reynolds Numbers The Navier-Stokes Equation Low Reynolds Numbers – The Stokes Equation Breaking the Symmetry Membranes
•	 Thermodynamics and Fluctuations Thermodynamics of Interfaces Phase Transitions – 2 state model Lipid membranes and biological membranes, membrane elasticity Membranal transport
	 Random walk, friction and diffusion Transmembranal ionic transport and ion channels Electrophysiology of cells Neuronal Dynamics
•	re: T. Herrmann, Klinische Strahlenbiologie – kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1 J. Freyschmidt, Handbuch diagnostische Radiologie – Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3 S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110 J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9 lecture notes

Language: English

Contact Hours: 1

Examination

Biophysics and Biomaterials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Biophysics and Biomaterials

Module PHM-0059: Magnetism Magnetism	1	6 ECTS/LP		
Version 1.0.0 (since WS09/10)				
Person responsible for module: Dr.	Hans-Albrecht Krug von Nidda			
Contents:				
 History, basics 				
Magnetic moments, classical	and quantum phenomenology			
 Exchange interaction and mean 	an-field theory			
 Magnetic anisotropy and mag 				
Thermodynamics of magnetic				
Magnetic domains and domai				
Magnetization processes and	micro magnetic treatment			
 AC susceptibility and ESR Spintransport / spintronics 				
Recent problems of magnetism				
Learning Outcomes / Competence				
The students:	5.			
for their description, like mearhave the ability to classify different interpretation, and	I phenomena of magnetic materials and the n-field theory, exchange interactions and mi erent magnetic phenomena and to apply the ndently to treat fundamental and typical topi t skills.	cro magnetic models, e corresponding models for their		
Total: 180 h 60 h lecture and exercise course (at 80 h studying of course content thro 20 h studying of course content usir 20 h studying of course content usir	nugh exercises / case studies (self-study) ng literarture (self-study)			
Conditions:				
basics of solid-state physics and qua	antum mechanics			
Frequency: annually	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]		
Contact Hours:	Repeat Exams Permitted:			
4	according to the examination			
4	according to the examination regulations of the study program			
4 Parts of the Module				
Parts of the Module				
Parts of the Module Part of the Module: Magnetism				
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture				
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English				
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3				
Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:				

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Magnetism

written exam / length of examination: 90 minutes

Examination Prerequisites:

Magnetism

Market Dilli 0040. Dissilar and	Table 1 and 1 and 1	
Module PHM-0048: Physics and Devices	Technology of Semiconductor	6 ECTS/LP
Physics and Technology of Semicondu	uctor Devices	
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. I	Dr. Hubert J. Krenner	
Contents:		
 Basic properties of semiconduct Semiconductor diodes and trans Semiconductor technology 	ors (electronic bandstructure, doping, car istors	rier excitations and carrier transport)
Learning Outcomes / Competences		
 excitations, and carrier transport Application of developed concept semiconductors. Application of these concepts to such as diodes and transistors Knowledge of the technologically Integrated acquisition of soft skill 	ts (effective mass, quasi-Fermi levels) to describe and understand the operation p y relevant methods and tools in semicono ls: autonomous working with specialist lit ty for teamwork, ability to document expe provided materials (self-study) literarture (self-study) h exercises / case studies (self-study)	describe the basic properties of principles of semiconductor devices ductor micro- and nanofabrication. erature in English, acquisition of
Conditions: recommended prerequisites: basic kno physics and quantum mechanics.	owledge in solid state physics, statistical	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics and Tec Mode of Instruction: lecture Language: English Contact Hours: 3	chnology of Semiconductor Devices	
Learning Outcome: see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Assigned Courses:

Physics and Technology of Semiconductor Devices (lecture)

*(online/digital) *

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Assigned Courses:

Physics and Technology of Semiconductor Devices (Tutorial) (exercise course)

*(online/digital) *

Examination

Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics and Technology of Semiconductor Devices

Module PHM-0049: Nanostructur Nanostructures / Nanophysics	es / Nanophysics	6 ECTS/LP
Version 1.1.0 (since WS09/10) Person responsible for module: Prof. D	r. Hubert J. Krenner	<u> </u>
2. Magnetotransport in low-dimensi	vires and dots, low dimensional electron onal systems, Quanten-Hall-Effect, Qua ells and quantum dots and their application	ntized conductance
 Profound knowledge of low-dime novel functional devices for high- Knowledge of different fabrication Application of these concepts to Integrated acquirement of soft sk 	ntal concepts in modern nanoscale scier insional semiconductor structures and ho frequency electronics and optoelectronic in approaches using bottom-up and top-o tackle present problems in nanophysics iills: autonomous working with specialist y for teamwork, ability to document expe	ow these systems can be applied for cs lown techniques literature in English, acquisition of
Workload: Total: 180 h 80 h studying of course content through 20 h studying of course content using h 60 h lecture and exercise course (atten 20 h studying of course content using p	iterarture (self-study) ndance)	
Conditions: recommended prerequisites: basic kno quantum mechanics.	wledge in solid-state physics and	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Nanostructures / Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4	/ Nanophysics	
Learning Outcome: see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)

Examination

Nanostructures / Nanophysics

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Nanostructures / Nanophysics

Module PHM-0203: Physics of C Physics of Cells	Cells	6 ECTS/LF
Version 1.1.0 (since WS16/17)		
Person responsible for module: Prof.	Dr. Achim Wixforth	
Dr. Christoph Westerhausen		
Contents:		
 Physical principles in Biology 		
	erial properties: cell membrane, organelles	s, cytoskeleton
 Thermodynamics of proteins ar Physical methods and techniqu 	-	
 Cell adhesion – interplay of spe 		
	of tissue - macromolecules of the extra cel	llular matrix
Micro mechanics and properties		
Cell-cell-communication		
Cell migration		
Cell stimulation and cell-compu	ter-communication	
Learning Outcomes / Competences	5:	
The students		
get to know a highly interdiscipl		
	operties of human cells, as building blocks	of living organisms and their material
properties.learn about the impact of forces	on the behavior of living cells	
	ndamental biological processes and prope	rties of biomaterials
	questions and define model systems to a	
The students learn the following key of		
 self-dependent working with En presentation techniques. 	ignsh specialist merature.	
 documentation of experimental 	results.	
 interdisciplinary thinking and wo 		
Workload: 60 h lecture and exercise course (atte	andance)	
20 h studying of course content using		
20 h studying of course content using		
	gh exercises / case studies (self-study)	
Conditions:		Credit Requirements:
Mechanics, Thermodynamics		Bestehen der Modulprüfung
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		

Contact Hours: 2

Learning Outcome:

see module description

Contents:

see module description

Literature:

- Sackmann, Erich, and Rudolf Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010.
- Nelson, Philip. Biological physics. New York: WH Freeman, 2004.
- Boal, D. Mechanics of the Cell. Cambridge University Press, 2012.
- · Lecture notes

Part of the Module: Physics of Cells (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 2

Learning Outcome:

see module description

Contents:

see module description

Literature:

see module description

Examination

Physics of Cells

oral exam / length of examination: 30 minutes

Module PHM-0054: Chemical Phy Chemical Physics //	ysics II	6 ECTS/LP
Chemical Physics II Version 1.3.0 (since WS09/10) Person responsible for module: Prof. D PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
Contents: Introduction to computational cha Hartree-Fock Theory DFT in a nutshell Prediction of reaction mechanism calculation of physical and chem	ns	
Learning Outcomes / Competences: The students:		
 molecules and solid-state composite have therefore the competence to Fock and Density Functional The materials with regard to their chemical solution. 	o autonomously perform simple quantun eory (DFT) and to interpret the electronic	n chemical calculations using Hartree- structure of functional molecules and
Remarks: It is possible for students to do quantu molecules on a computer cluster withir	m chemical calculations autonomously a n the scope of the tutorial.	nd analyze electronical structures of
Workload: Total: 180 h 60 h lecture and exercise course (atter 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using	h exercises / case studies (self-study) iterarture (self-study)	
Conditions: It is highly recommended to complete t	the module Chemical Physics I first.	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Physic Mode of Instruction: lecture Language: English Contact Hours: 3	es II	
Learning Outcome:		

see module description

- I. N. Levine, Quantum Chemistry, Pearson, 7th ed 2013.
- A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Dover, 1996 (EbookCentral ebook).
- E. G. Lewars, Computational Chemistry, Springer, 2011.
- D. C. Young, Computational Chemistry: A practical guide for applying techniques to real world problems, Wiley ebook, **2002**.
- R. A. van Santen, Ph. Sautet, Computational Methods in Catalysis and Materials Science, Wiley ebook, 2009.
- P. Popelier, Atoms in Molecules: An Introduction, Pearson Education Limited, 2000.
- A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburg, PA.

Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Examination

Chemical Physics II

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics II

	n Materials	6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [Dr. Hana Bunzen	Dr. Dirk Volkmer	J
Contents:		
A) Basics of coordination ChemistryHistorical development of coordi	nation chemistry [2]	
 Structures and nomenclature rul Chemical bonds in transition me Stability of transition metal coord Characteristic reactions [3] 	tal coordination compounds [3]	
B) Selected classes of functional mate	rials	
 Bioinorganic chemistry [3] Coordination polymers / metal-o Coordination compounds in med Photochemistry of coordination of 	dical applications [3]	
Learning Outcomes / Competences The students	:	
transition metal compounds),broaden their capabilities to inte coordination compounds,	concepts of chemical bonding in coordinat rpret UV/vis absorption spectra and to pr of coordination chemistry onto topics of m kills.	edict stability and reactivity of
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	literarture (self-study)	
Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using 20 h studying of course content using	literarture (self-study) provided materials (self-study) gh exercises / case studies (self-study)	
Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug Conditions: Recommended: The lecture course is	literarture (self-study) provided materials (self-study) gh exercises / case studies (self-study)	Minimal Duration of the Module: 1 semester[s]

Part of the Module: Coordination Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Coordination Materials written exam / length of examination: 90 minutes

Examination Prerequisites: Coordination Materials

Module PHM-0113: Advanced So Advanced Solid State Materials	blid State Materials	6 ECTS/LP
Version 1.0.0 (since WS10/11)		
Person responsible for module: Prof. [Dr. Henning Höppe	
Contents: Repitition of concepts Novel silicate-analogous materia Luminescent materials Pigments Heterogeneous catalysis 	IIS	
Learning Outcomes / Competences		
 acquire skills to predict the property 	erties of chemical compounds, based of potential of functional materials for fur operties of these materials.	•
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using	literarture (self-study) h exercises / case studies (self-study)	
Conditions: Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 3	State Materials	
Learning Outcome: see module description		
Contents: see module description		
Literature: • A. West, Solid State Chemisi • L. Smart, E. Moore, Solid Sta		

- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

Part of the Module: Advanced Solid State Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Literature:

- A. West, Solid State Chemistry and Its Applications
- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

Examination

Advanced Solid State Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced Solid State Materials

Module PHM-0217: Advanced X- niques	ray and Neutron Diffraction Tech-	6 ECTS/L
Advanced X-ray and Neutron Diffraction	on Techniques	
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. E PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
Contents: Subjects of the lecture are advanced X	(-ray and neutron diffraction techniques:	
 Beyond the standard model: The How to obtain and analyze expe 	rimental charge densities sical properties from diffraction data	ction
Learning Outcomes / Competences		
neutron diffraction dataknow the basics of the <i>Quantum</i>	e on the reconstruction of accurate electro Theory of Atoms in Molecules pology of the electron density and correla	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atter	h exercises / case studies (self-study) literarture (self-study)	
Conditions: It is recommended to complete the Mo	dule PHM-0053 Chemical Physics I.	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
	and Neutron Diffraction Techniques	

Contact Hours: 3

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 3. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.
- 4. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 5. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Advanced X-ray and Neutron Diffraction Techniques written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced X-ray and Neutron Diffraction Techniques

Module PHM-0114: Porous Fun Porous Functional Materials	ctional Materials	6 ECTS/LI
Version 1.0.0 (since SS11) Person responsible for module: Prof.	Dr. Dirk Volkmer	
· · · · · · · · · · · · · · · · · · ·		
 Contents: Overview and historical develop 	amente	
 Structural families of porous fra 		
 Synthesis strategies 		
Adsorption and diffusion		
 Thermal analysis methods 		
 Catalytic properties 		
 Advanced applications and current 	rent trends	
Learning Outcomes / Competences	5:	
	wledge about design principles and syn	
	aracterize porous solid state materials v	vith special emphasis laid upon sorption
and thermal analysis,		
	technical applications of porous solids.	
Integrated acquirement of soft s	SKIIS	
Remarks:		
•	e students can take part in a hands-on r	
	aracterization" to practice their knowled	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atte	gh exercises / case studies (self-study)	
20 h studying of course content using		
20 h studying of course content using		
Conditions:		Credit Requirements:
participation in the course Materials Chemistry		one written examination, 90 min
· · ·	-	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination regulations of the study program	
	regulations of the study program	
Parts of the Module		
Part of the Module: Porous Function	onal Materials	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
Contact Hours: 4 Contents:		

• Paul A. Wright, Microporous Framework Solids (RSC Materials Monographs, 2008)

· selected reviews and journal articles cited on the slides

Assigned Courses:

Porous Functional Materials (lecture)

*(online/digital) *

Examination

Porous Functional Materials written exam / length of examination: 90 minutes Examination Prerequisites: Porous Functional Materials

	ds in Solid State NMR Spectro-	6 ECTS/LF
scopy Novel Methods in Solid State NMR Sp	ectroscopy	
Version 1.0.0 (since SoSe17)		
Person responsible for module: Prof. D)r. Leo van Wüllen	
Contents:	-	_
The physical basis of nuclear magnetic	resonance	
Pulsed NMR methods; Fourier Transfo	rm NMR	
Internal interactions		
Magic Angle Spinning		
Modern pulse sequences or how to ob	tain specific information about the struc	ture and dynamics of solid materials
Recent highlights of the application of	modern solid state NMR in materials sc	ience
Workload:		
Total: 180 h	_	_
Conditions:		Credit Requirements:
none	1	Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Novel Methods i	n Solid State NMR Spectroscopy	
Mode of Instruction: lecture Language: German		
Contact Hours: 3		
Dart of the Medule: Nevel Methodo i	n Solid State NMR Spectroscopy (Tu	torial
Mode of Instruction: exercise course	n Sond State NMR Spectroscopy (Tu	torial)
Language: German		
Contact Hours: 1		
Literature:		
1. M. H. Levitt, Spin Dynamics, Joh	-	
2 H Günther NMP spectrosserv	VVIICY 2001.	
 H. Günther, NMR spectroscopy, M.Duer, Introduction to Solid-Sta 	te NMR spectroscopy, Blackwell Publis	shina Ltd., 2004.

Novel Methods in Solid State NMR Spectroscopy

written exam / length of examination: 90 minutes

Module PHM-0167: Oxidation and Corrosion Oxidation and Corrosion	6 ECTS/LP	
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. Dr. Ferdinand Haider		
Contents:		
Introduction		
Review of thermodynamics		
Chemical equilibria		
Electrochemistry		
Electrode kinetics		
High temperature oxidation		
Localized corrosion		
 Shallow pit corrosion Pitting corrosion Crevice corrosion Intercrystalline corrosion Stress corrosion cracking Fatigue corrosion Erosion corrosion Galvanic corrosion 		
Water and seawater corrosion		
Corrosion monitoring		
Corrosion properties of specific materials		
Specific corrosion problems in certain branches		
Oil and Gas industryAutomobile industryFood industry		
Corrosion protection		
 Passive layers Reaction layers (Diffusion layers) Coatings (organic, inorganic) Cathodic, anodic protection Inhibitors 		
 Learning Outcomes / Competences: The students: know the the fundamental basics, mechanics, and types of corrosion pr obtain specific knowledge of one type of corrosion. 	rocesses,	
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 120 h studying of course content using provided materials (self-study)		
Conditions: Recommended: good knowledge in materials science, basic knowledge in physical chemistry	Credit Requirements: written exam (90 min)	

Frequency: each winter semester	Recommended Semester: from 3.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Oxidation and Corrosion

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Schütze: Corrosion and Environmental Degradation

Part of the Module: Oxidation and Corrosion (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Oxidation and Corrosion

written exam / length of examination: 90 minutes

Examination Prerequisites:

Oxidation and Corrosion

Module PHM-0164: Characteriza Characterization of Composite Materi	-	6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Markus Sause	
Contents:		
The following topics are presented:		
 Introduction to composite mater 	ials	
 Applications of composite mate 	rials	
 Mechanical testing 		
 Thermophysical testing 		
Nondestructive testing		
Learning Outcomes / Competences	::	
The students:		
are introduced to important con	f materials testing and evaluation of co cepts in measurement techniques, and re further information of the scientific to	material models applied to composites.
Workload:		
Total: 180 h		
20 h studying of course content using	literarture (self-study)	
20 h studying of course content using		
60 h lecture and exercise course (atte	-	
80 h studying of course content throu	gh exercises / case studies (self-study)	
Conditions: Recommended: basic knowledge in n composite materials	naterials science, particularly in	
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		

Part of the Module: Characterization of Composite Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Characterization of Composite Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Characterization of Composite Materials

Conditions: Recommended: basic knowledge in r organic chemistry Frequency: each winter semester Contact Hours: 4	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module: 1 semester[s]
Recommended: basic knowledge in r organic chemistry Frequency: each winter semester	Recommended Semester: from 1.	
Recommended: basic knowledge in r organic chemistry		
Workload: Total: 180 h 80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte	provided materials (self-study)	
	chemical properties of fibers, matrices, ar ire further knowledge of the scientific topi	
 know the application areas of c know the basics of production t materials. 	omposite materials. echnologies of fibers, polymeric, and cera	amic matrices and fiber reinforced
Learning Outcomes / Competences The students:	S:	
	es of fibers and their precursor materials es of commonly used polymeric and cera gies	mic matrix materials
Contents: The following topics are treated:		
Person responsible for module: Prof. Frau Dr. Judith Moosburger-Will	Dr. Siegfried Horn	
Version 1.0.0 (since SoSe15)	ssing and Materials Properties	

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (lecture)

*(online/digital) *

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (Tutorial) (exercise course)

*(online/digital) *

Examination

Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes

Examination Prerequisites:

Fiber Reinforced Composites: Processing and Materials Properties

 Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Klaus Ruhland Contents: Introduction to polymer science Elastomers and elastoplastic materials Memory-shape polymers Piezoelectric polymers Electrically conducting polymers Ion-conducting polymers Magnetic polymers Photoresponsive polymers Polymers with second order non-linear optical properties 	
 Contents: Introduction to polymer science Elastomers and elastoplastic materials Memory-shape polymers Piezoelectric polymers Electrically conducting polymers Ion-conducting polymers Magnetic polymers Photoresponsive polymers Polymers with second order non-linear optical properties 	
 Introduction to polymer science Elastomers and elastoplastic materials Memory-shape polymers Piezoelectric polymers Electrically conducting polymers Ion-conducting polymers Magnetic polymers Photoresponsive polymers Polymers with second order non-linear optical properties 	
 Elastomers and elastoplastic materials Memory-shape polymers Piezoelectric polymers Electrically conducting polymers Ion-conducting polymers Magnetic polymers Photoresponsive polymers Polymers with second order non-linear optical properties 	
 Memory-shape polymers Piezoelectric polymers Electrically conducting polymers Ion-conducting polymers Magnetic polymers Photoresponsive polymers Polymers with second order non-linear optical properties 	
 Piezoelectric polymers Electrically conducting polymers Ion-conducting polymers Magnetic polymers Photoresponsive polymers Polymers with second order non-linear optical properties 	
 Electrically conducting polymers Ion-conducting polymers Magnetic polymers Photoresponsive polymers Polymers with second order non-linear optical properties 	
 Ion-conducting polymers Magnetic polymers Photoresponsive polymers Polymers with second order non-linear optical properties 	
 Magnetic polymers Photoresponsive polymers Polymers with second order non-linear optical properties 	
Photoresponsive polymersPolymers with second order non-linear optical properties	
Polymers with second order non-linear optical properties	
Polymeric catalysts	
Self-healing polymers	
 Polymers in bio sciences> 	
Vorkload: Total: 180 h	
0 h studying of course content using provided materials (self-study)	
0 h studying of course content through exercises / case studies (self-study)	
0 h studying of course content using literarture (self-study)	
0 h lecture and exercise course (attendance)	1
Conditions:	
Recommended: Attendance to PHM-0035 (Chemie I), PHM-0036 (Chemie II)	
nd MRM-0050 (Grundlagen der Polymerchemie und -physik)	
requency: each summer semester Recommended Semester:	Minimal Duration of the Module:
from 2.	1 semester[s]
Contact Hours: Repeat Exams Permitted:	
according to the examination	
regulations of the study program	
Parts of the Module	l

Part of the Module: Functional Polymers

Mode of Instruction: lecture Language: English

Contact Hours: 3

Part of the Module: Functional Polymers (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Valid Wintersemester 2020/2021 - Printed 30.11.2020

Examination

Functional Polymers

written exam / length of examination: 90 minutes

Examination Prerequisites:

Functional Polymers

Non-Destructive Testing	ctive Testing	6 ECTS/LP
Version 1.0.0 (since WS14/15) Person responsible for module: Prof.	Dr. Markus Sause	
Contents:		
Introduction to nondestructive t	esting methods	
 Visual inspection 	5	
Ultrasonic testing		
 Guided wave testing 		
 Acoustic emission analysis 		
Thermography		
Radiography		
Eddy current testingSpecialized nondestructive met	thods	
Learning Outcomes / Competences The students	5:	
	of pondoatruptive evolution of metaricity	
	of nondestructive evaluation of materials acepts in nondestructive measurement to	
•	ire further knowledge of the scientific top	•
 Integrated acquirement of soft 	-	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atte	endance)	
20 h studying of course content using	literarture (self-study)	
20 h studying of course content using		
80 h studying of course content throu	gh exercises / case studies (self-study)	- 1
Conditions:		
Basic knowledge on materials scienc	e, in particular composite materials	
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
• •		
	from 1.	1 semester[s]
Contact Hours:	from 1. Repeat Exams Permitted:	1 semester[s]
	Repeat Exams Permitted: according to the examination	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination	1 semester[s]
Contact Hours: 4 Parts of the Module	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructive	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructive Mode of Instruction: lecture Language: English	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructive Mode of Instruction: lecture Language: English Contact Hours: 3	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]

Literature:

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- · Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- · Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Non-Destructive Testing (lecture)

*(online/digital) *

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Non-Destructive Testing (Tutorial) (exercise course)

*(online/digital) *

Examination

Non-Destructive Testing

written exam / length of examination: 90 minutes

Examination Prerequisites:

Non-Destructive Testing

Module PHM-0168: Modern Metal Modern Metallic Materials	lic Materials	6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	r. Ferdinand Haider	
Contents:		
Introduction		
Review of physical metallurgy		
Steels:		
 principles common alloying elements martensitic transformations dual phase steels TRIP and TWIP steels maraging steel electrical steel production and processing 		
Aluminium alloys:		
 2xxx 6xxx 7xxx Processing – creep forming, hydr 	oforming, spinforming	
Titanium alloys		
Magnesium cast alloys		
Superalloys		
Intermetallics, high entropy alloys		
Copper, brass, bronzes		
Metallic glasses		
Alloy design		
Learning Outcomes / Competences: Students • learn about all kinds of actual me	tallic alloys, their properties and how the	ese properties can be derived from
basic concepts		
Workload: Total: 180 h 60 h lecture and exercise course (atten 20 h studying of course content using p 20 h studying of course content using li 80 h studying of course content through	rovided materials (self-study) terarture (self-study)	
Conditions:		
Recommended: Knowledge of physical	metallurgy and physical chemistry	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]

Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Modern	n Metallic Materials	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
Literature:		
Cahn-Haasen-Kramer: N	laterials Science and Technology	
Original literature		
-		
Examination		
Modern Metallic Materials		
written exam / length of examination: 90 minutes		

Examination Prerequisites:

Modern Metallic Materials

Module PHM-0196: Surfaces and Surfaces and Interfaces II: Joining proc		6 ECTS/LF
Version 1.1.0 (since WS15/16) Person responsible for module: Prof. D Dozenten: Prof. Dr. Siegfried Horn, Dr.		
Learning Outcomes / Competences: The students		
	esion	
Workload: Total: 180 h		
Conditions: Basic knowledge on materials science, lecture "Surfaces and Interfaces I" Module Surfaces and Interfaces (PHM-0117) - recommended		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: any	
Parts of the Module		
Part of the Module: Surfaces and Inte Mode of Instruction: lecture Lecturers: Prof. Dr. Siegfried Horn Language: German Contact Hours: 3	erfaces II: Joining processes	
Contents: The following topics are treated:		
 Introduction to adhesion Role of surface and interface prop Introduction to interactions at surfa Adhesion theories Surface and interface energy Surface treatment techniques Joining techniques Physical and chemical properties of Applications 	aces and interfaces	
Lehr-/Lernmethoden: Lecture: Beamer presentation and E Exercise: Exercises on recent topic		
Literature:		

Examination

Surfaces and Interfaces II: Joining processes

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces II: Joining processes

Parts of the Module

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course Language: German Contact Hours: 1

Remarks: No exam in this module can be take been passed successfully. Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Basic knowledge of electrodynamics a Frequency: each summer semester Contact Hours: 4 Parts of the Module	gh exercises / case studies (self-study) provided materials (self-study) ndance)	and Optical Materials" had already Minimal Duration of the Module: 1 semester[s]
No exam in this module can be take been passed successfully. Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: Basic knowledge of electrodynamics a Frequency: each summer semester	literarture (self-study) ph exercises / case studies (self-study) provided materials (self-study) ndance) and atomic/solid state physics. Recommended Semester: from 2.	Minimal Duration of the Module:
No exam in this module can be take been passed successfully. Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (attent Conditions: Basic knowledge of electrodynamics a	literarture (self-study) gh exercises / case studies (self-study) provided materials (self-study) ndance) and atomic/solid state physics.	and Optical Materials" had already
No exam in this module can be take been passed successfully. Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using	literarture (self-study) jh exercises / case studies (self-study) provided materials (self-study)	and Optical Materials" had already
No exam in this module can be take	n, if the module PHM-0160 "Dielectric	and Optical Materials" had already
competence to select materials for am		
	ectromagnetic wave propagation in solid citations in solids. They are able to analy	_
 Prof. Dr. Istvan Kézsmárki Contents: Fundamentals of electromagneti absorption) Spectroscopic techniques: Fouri Anisotropic media, Birefringence 	ic wave propagation in homogenous med er-Transform-Spectroscopy, Time-doma e, Quadruchroism, linear optics ctors/insulators, molecular materials, me excitons, luminescence centers emitting devices	in THz Spectroscopy, Ellipsometry
Person responsible for module: Prof. [Dr. Joachim Deisenhofer	
Optical Excitations in Materials Version 1.1.0 (since SoSe20)		

Language: English Contact Hours: 4

ECTS Credits: 6.0

Examination

Optical Excitations in Materials

written exam / length of examination: 90 minutes

Description:

Exceptional regulation in the summer term 2020: Oral Exam (30 Minutes)

Module PHM-0253: Dielectric Ma Dielectric Materials	terials	6 ECTS/LI
Version 1.0.0 (since SoSe20) Person responsible for module: Dr. Ste PD Dr. Peter Lunkenheimer	phan Krohns	
Contents:		
measurementsDynamic processes in dielectric in	ies, broadband dielectric spectroscopy, materials: relaxation processes, phenom	enological models
	d matter: liquids, glasses, plastic crystals ictivity, universal dielectric response	8
	echanism, dielectric properties, advance	ed electrolytes for energy-storage
materials	uivalent-circuits, applications (supercapa erties (relaxor ferroelectric, ferroelectric,	
select materials for different kinds of ap	ey are able to analyze materials requirem oplications.	
Elective compulsory module		
Workload: Total: 180 h		
60 h lecture and exercise course (atter	idance)	
20 h studying of course content using p		
20 h studying of course content using I		
80 h studying of course content throug	h exercises / case studies (self-study)	
Conditions: Basic knowledge of solid state physics		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Dielectric Materi	als	
Mode of Instruction: lecture		
Lecturers: Dr. Stephan Krohns, PD Dr	. Peter Lunkenheimer	
Language: English / German		

Language: English / German

Examination

Dielectric Materials Dielectric Materials

presentation / length of examination: 45 minutes

Examination Prerequisites:

Dielectric Materials

Module PHM-0166: Carbon-base als)	d functional Materials (Carboteri-	6 ECTS/LP
Carbon-based functional Materials (Ca	arboterials)	
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D	Dr. Dirk Volkmer	
Contents: 1. Introduction to carbon allotropes and	d porous carbon materials [4]	
2. Physical properties of fullerenes, ca	rbon nanotubes and graphene [4]	
3. Solid state NMR spectroscopy of ca	rbon materials [4]	
4. Metal carbides [4]		
5. Carbon thin films and coatings [4]		
6. Manufacturing and processing techr	nology of carbon fibres [4]	
7. Carbon-fibre reinforced polymer con	nposites [4]	
8. Carbon-fibre reinforced aluminium (Metal Matrix Composites, MMC) [4]	
9. Energy storage in carbon materials	[4]	
10. Carbon-based materials for opto-e	lectronics [4]	
11. Quantum transport phenomena rel	ating to carbon materials [4]	
12. a) Manipulating heat flow with carb	on-based electronic analogs: phononics	in place of electronics [2]
12. b) Carbon-based spintronics [2]		
13. Fabrication and processing of carb	on-based nanostructures [4]	
Learning Outcomes / Competences: The students:		
-		
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug 60 h lecture and exercise course (atter	iterarture (self-study) h exercises / case studies (self-study)	
Conditions:		
none		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Carbon-based functional Materials (Carboterials)

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

will be announced by the lecturers

Examination

Carbon-based functional Materials (Carboterials)

written exam / length of examination: 120 minutes

Examination Prerequisites:

Carbon-based functional Materials (Carboterials)

Module PHM-0174: Theoretical C Theoretical Concepts and Simulation	concepts and Simulation	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. D	r. Liviu Chioncel	
Contents:	,	
2. Basic numerical methods: interpo	programming languages, data visualiza olation, integration Equations (e.g., diffusion equation, Sch	
Learning Outcomes / Competences: The students:		
relevant in material science,	ermodynamics and statistical physics a	
 have the expertise to find the nurve validity of the numerical results, Integrated acquirement of soft skews 	-	n problem and to judge the quality and
Remarks: Links to software related to the course:		_
 http://www.bloodshed.net/ http://www.cplusplus.com/doc/tur http://www.cygwin.com/ http://xmd.sourceforge.net/downl http://www.rasmol.org/ http://felt.sourceforge.net/ 		
Workload: Total: 180 h 60 h lecture and exercise course (atter 80 h studying of course content throug 20 h studying of course content using I 20 h studying of course content using p	h exercises / case studies (self-study) iterarture (self-study)	
Conditions:		Credit Requirements:
Conditions: Recommended: basic knowledge of quantum mechanics, thermodynamics, and numerical methods as well as of a programming language		project work in small groups, including a written summary of the results (ca. 10-20 pages) as well as an oral presentation
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Tao Pang, An Introduction to Computational Physics (Cambridge University Press)
- J. M. Thijssen, Computational Physics (Cambridge University Press)
- Koonin, Meredith, Computational Physics (Addison-Weseley)
- D. C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge University Press)
- W. H. Press et al, Numerical Recipes (Cambridge University Press)

Part of the Module: Theoretical Concepts and Simulation (Project)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Theoretical Concepts and Simulation

seminar / length of examination: 30 minutes

Examination Prerequisites:

Theoretical Concepts and Simulation

40 h studying of course content us Conditions: It is strongly recommended to con addition, knowledge of molecular Frequency: every 3rd semester Contact Hours: 4	Implete the module solid-state physics first. In physics is desired. Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module: 1 semester[s]
Conditions: It is strongly recommended to con addition, knowledge of molecular	physics is desired. Recommended Semester:	
Conditions: It is strongly recommended to con		
40 h studying of course content us		
	rough exercises / case studies (self-study) sing provided materials (self-study)	
 organic semiconductor devi have acquired skills for the functioning of components, and have the competence to 	nd electronic properties of organic semiconduc ces, classification of the materials taking into acco o comprehend and attend to current problems oft skills: practicing technical English, working	unt their specific features in the s in the s in the field of organic electronics.
 Organic metals Light-emitting diodes Field-effect transistors Solar cells and laser 		
 Materials and preparation Structural properties Electronic structure Optical and electrical prope 	ties	
Basic concepts and applications c	f organic semiconductors	
Contents:	of. Dr. Wolfgang Brütting	
Version 1.0.0 (since WS09/10) Person responsible for module: P	Semiconductors	6 ECTS/LF

Language: English

Contact Hours: 3

Learning Outcome:

see module description

Contents:

see module description

Literature:

- M. Schwoerer, H. Ch. Wolf: Organic Molecular Solids (Wiley-VCH)
- W. Brütting (editor): Physics of Organic Semiconductors (Wiley-VCH)
- A. Köhler, H. Bässler: Electronic Processes in Organic Semiconductors (Wiley-VCH)

Part of the Module: Organic Semiconductors (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Organic Semiconductors

written exam / length of examination: 90 minutes

Examination Prerequisites:

Organic Semiconductors

Module PHM-0066: Supercond	luctivity	6 ECTS/LP
Superconductivity		
Version 1.0.0 (since WS11/12) Person responsible for module: PD	Dr. Reinhard Tidecks	
Contents:		_
Introductory Remarks and Lite	erature	
-	f the Superconducting State, an Overview	
	namics and Electrodynamics of the SC	
Ginzburg-Landau Theory		
 Microscopic Theories 		
-	the Nature of the Superconducting State	
Josephson-Effects		
 High Temperature Supercond Application of Superconductiv 		
Learning Outcomes / Competenc The students:	es:	
will get an introduction to superior	-	
	ntal results they will learn the fundamenta mportant technical applications of superco	
	n to the basic concepts of the main phenoi	-
	explain the experimental observations.	
	sive list of further reading will be supplied.	
Workload:		
Total: 180 h		
60 h lecture and exercise course (at	ttendance)	
•	, pugh exercises / case studies (self-study)	
20 h studying of course content usir	ng literarture (self-study)	
20 h studying of course content usir	ng provided materials (self-study)	
Conditions:		
 Physik IV – Solid-state physic 	s	
 Theoretical physics I-III 		
Frequency: every 3rd semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
according to the examination		
	regulations of the study program	
Parts of the Module		
Part of the Module: Superconduc	tivity	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
Learning Outcome:		
see module description		
Contents:		

Contents:

see module description

Literature:

- W. Buckel, Supraleitung, 5. Auflage (VCH, Weinheim, 1994)
- W. Buckel und R. Kleiner, Supraleitung, 6. Auflage (WILEY-VCH, Weinheim, 2004)
- M. Tinkham, Introduction to Superconductivity, 2nd Edition (McGraw-Hill, Inc., New York, 1996, Reprint by Dover Publications Inc. Miniola , 2004)
- Weitere Literatur wird in der Vorlesung angegeben

Examination

Superconductivity

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Superconductivity

Module PHM-0060: Low Tempe Low Temperature Physics	erature Physics	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: Prof	. Dr. Philipp Gegenwart	
Contents:		
Introduction		
 Properties of matter at low ter 	nperatures	
Cryoliquids and superfluidity		
Cryogenic engineering		
Thermometry		
Quantum Matter		
Learning Outcomes / Competence The students:	9S:	
have acquired the theoretical knowle	at low temperatures and the correspondied edge to perform low-temperature measures tigate current problems in low-temperation	rements,
Total: 180 h 20 h studying of course content usir 20 h studying of course content usir 60 h lecture and exercise course (at 80 h studying of course content thro	g literarture (self-study)	
Conditions: Physik IV - Solid-state physics		
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Low Tempera Mode of Instruction: lecture Language: English Contact Hours: 3	ture Physics	
Learning Outcome: see module description		

Contents:

• Introduction (temperature scale, history of low temperature physics)

• Properties of matter at low temperatures (specific heat, thermal expansion, electrical resistance, thermal conductivity)

- Cryoliquids and superfluidity (nitrogen, hydrogen, 4-He and 3-He: phase diagrams, superfluidity)
- Cryogenic engineering (liquefaction of gases, helium cryostats, dilution refrigerator, adiabatic demagnetization, further techniques)
- · Thermometry (primary and secondary thermometers at different temperature regimes)
- Quantum Matter (quantum Transport, Quantum phase transitions, Quantum spin liquids)

Literature:

- C. Enss, S. Hunklinger, Tieftemperaturphysik (Springer)
- F. Pobell, Matter and Methods at Low Temperatures (Springer)

Assigned Courses:

Low Temperature Physics (lecture)

*(online/digital) *

Part of the Module: Low Temperature Physics (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Assigned Courses:

Low Temperature Physics (Tutorial) (exercise course)

*(online/digital) *

Examination

Low Temperature Physics oral exam / length of examination: 30 minutes Examination Prerequisites: Low Temperature Physics

	ctional Materials	6 ECTS/LP
Porous Functional Materials Version 1.0.0 (since SS11)		
Person responsible for module: Prof. I	Dr. Dirk Volkmer	
Contents: • Overview and historical develop • Structural families of porous frances • Synthesis strategies • Adsorption and diffusion • Thermal analysis methods • Catalytic properties	meworks	
Advanced applications and curr Learning Outcomes / Competences		
 broaden their capabilities to cha and thermal analysis, 	vledge about design principles and synt aracterize porous solid state materials w technical applications of porous solids. skills	
Remarks:		
	students can take part in a hands-on m	nethod course
`Porous Materials Synthesis and Cha	aracterization" to practice their knowledge	ge.
Workload:		
Total: 180 h		
60 h lecture and exercise course (atte	(n dom o o)	
(uno	endance)	
	gh exercises / case studies (self-study)	
80 h studying of course content throug	gh exercises / case studies (self-study)	
80 h studying of course content throug 20 h studying of course content using	gh exercises / case studies (self-study) literarture (self-study)	
80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using	gh exercises / case studies (self-study) literarture (self-study)	Credit Requirements:
80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions:	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study)	Credit Requirements: one written examination, 90 min
80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions: participation in the course Materials C	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study)	-
	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study) Chemistry Recommended Semester:	one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions: participation in the course Materials C Frequency: each winter semester Contact Hours: 4	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study) Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions: participation in the course Materials C Frequency: each winter semester Contact Hours: 4 Parts of the Module	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study) Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions: participation in the course Materials C Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Functio	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study) Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions: participation in the course Materials C Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Functio Mode of Instruction: lecture	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study) Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions: participation in the course Materials C Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Functio Mode of Instruction: lecture Language: English	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study) Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions: participation in the course Materials C Frequency: each winter semester Contact Hours:	gh exercises / case studies (self-study) literarture (self-study) provided materials (self-study) Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	one written examination, 90 min Minimal Duration of the Module:

Literature:

• Paul A. Wright, Microporous Framework Solids (RSC Materials Monographs, 2008)

· selected reviews and journal articles cited on the slides

Assigned Courses:

Porous Functional Materials (lecture)

*(online/digital) *

Examination

Porous Functional Materials written exam / length of examination: 90 minutes Examination Prerequisites: Porous Functional Materials

Module PHM-0068: Spintronics Spintronics		6 ECTS/L
Version 1.0.0 (since SoSe14)		I
Person responsible for module: PD Dr.	. German Hammerl	
Contents:		
 Introduction into magnetism 		
 Basic spintronic effects and devi 	ces	
 Novel materials for spintronic ap 	-	
 Spin-sensitive experimental methods 		
Semiconductor based spintronic	S	
Learning Outcomes / Competences:		
The students:		
 know the fundamental properties structures. 	s of magnetic materials, the basic spin	ronic effects, and the related device
,	g materials with respect to their applica	bility for spintropic devices
	al with current problems in the field of s	
spintronics largely autonomous.		
Workload:		
Total: 180 h		
60 h lecture and exercise course (atter	ndance)	
20 h studying of course content using	-	
80 h studying of course content throug		
20 h studying of course content using l		
Conditions:		
none	Decommon ded Composters	Ninimal Duration of the Medules
none	Recommended Semester:	Minimal Duration of the Module:
none Frequency: each summer semester	from 2.	Minimal Duration of the Module: 1 semester[s]
none Frequency: each summer semester Contact Hours:	from 2. Repeat Exams Permitted:	
rone Frequency: each summer semester Contact Hours: 4	from 2. Repeat Exams Permitted: according to the examination	
none Frequency: each summer semester Contact Hours:	from 2. Repeat Exams Permitted:	
none Frequency: each summer semester Contact Hours:	from 2. Repeat Exams Permitted: according to the examination	
none Frequency: each summer semester Contact Hours: 4 Parts of the Module	from 2. Repeat Exams Permitted: according to the examination	
none Frequency: each summer semester Contact Hours: 4	from 2. Repeat Exams Permitted: according to the examination	

Contact Hours: 3

Learning Outcome:

see module description

Contents:

see module description

Literature:

- N. W. Ashcroft, N. D. Mermin, Solid State Physics, Cengage Learning (2011), ISBN: 81-315-0052-7
- C. Felser, G. H. Hechter, Spintronics From Materials to Devices, Springer (2013), ISBN: 978-90-481-3831-9
- S. Bandyopadhyay, M. Cahay, Introduction to Spintronics, CRC Press (2008), ISBN: 978-0-9493-3133-6

Part of the Module: Spintronics (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Spintronics written exam / length of examination: 90 minutes

Examination Prerequisites:

Spintronics

Module PHM-0057: Physics of T Physics of Thin Films	Thin Films	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: PD D	r. German Hammerl	
Contents: • Layer growth • Thin film technology • Analysis of thin films		
Properties and applications of t	hin films	
Learning Outcomes / Competences The students:	5:	
 have acquired skills of grouping and applications, and have the competence to deal w 	ith current problems in the field of thin fill skills: practicing technical English, workir	hin layers with respect to their properties
Workload: Total: 180 h 80 h studying of course content throu 20 h studying of course content using 60 h lecture and exercise course (atte 20 h studying of course content using Conditions:	endance)	
none		
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics of Thir Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome:	n Films	
see module description		
Contents: see module description		
 H. Lüth, Solid Surfaces, Inte A. Wagendristel, Y. Wang, A Publishing, 1994) 	nichttechnologie (VDI Verlag, 1987) erfaces and Thin Films (Springer Verlag, An Introduction to Physics and Technolog cience of Thin Films (Academic Press, 19	gy of Thin Films (World Scientific

Examination

Physics of Thin Films written exam / length of examination: 90 minutes Examination Prerequisites:

Physics of Thin Films

Module PHM-0056: Ion-Solid Ion-Solid Interaction	d Interaction	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: a	apl. Prof. Dr. Helmut Karl	
 Fundamentals of atomic conclusion models) Ion-induced modification or 	ntific and technological application, principles) ollision processes (scattering, cross-sections, f solids (integrated circuit fabrication with emp nage, ion milling and etching (RIE), sputtering	energy loss models, potentials in binary ohasis on ion induced phenomena, ion
Learning Outcomes / Compete The students:	nces:	_
	te physical models for specific technological ork extensively autonomous on problems con	
	using provided materials (self-study) hrough exercises / case studies (self-study)	
Conditions: Basic Courses in Physics I–IV S	olid State Physics, Nuclear Physics	
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Ion-Solid In Mode of Instruction: lecture Language: English Contact Hours: 3	nteraction	
Learning Outcome: see module description		
Contents: see module description		

Literature:

- R. Smith, Atomic and ion collisions in solids and at surfaces (Cambridge University Press, 1997)
- E. Rimini, Ion implantation: Basics to device fabrication (Kluwer, 1995)
- W. Eckstein: Computer Simulation of Ion-Solid Interactions (Springer, 1991)
- H. Ryssel, I. Ruge: Ionenimplantation (Teubner, 1978)
- Y. H. Ohtsuki: Charged Beam Interaction with Solids (Taylor & Francis, 1983)
- J. F. Ziegler (Hrsg.): The Stopping and Range of Ions in Solids (Pergamon)
- R. Behrisch (Hrsg.): Sputtering by Particle Bombardment (Springer)
- M. Nastasi, J. K. Hirvonen, J. W. Mayer: Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, 1996)
- http://www.SRIM.org

Part of the Module: Ion-Solid Interaction (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Ion-Solid Interaction

written exam / length of examination: 90 minutes

Examination Prerequisites:

Ion-Solid Interaction

Module PHM-0069: Applied Mag Applied Magnetic Materials and Meth	-	6 ECTS/LP
Version 1.0.0 (since WS14/15) Person responsible for module: Prof.	Dr. Manfred Albrecht	
Contents:		
Basics of magnetism		
 Ferrimagnets, permanent magn 	iets	
 Magnetic nanoparticles 		
Superparamagnetism		
Exchange bias effect		
 Magnetoresistance, sensors Experimental methods (e.g. Mö 	ßbauer Spectroscopy, mu-SR)	
Learning Outcomes / Competences		
The students know the basic tell		
	f basic physical relations and their appl	ications,
	ualitative observations, interpret quant	
	nysical effects of chosen magnetic mate	-
	skills: autonomous working with special	
presentation techniques, capac thinking and working.	ity for teamwork, ability to document ex	perimental results, and interdisciplinary
Workload: Total: 180 h		
20 h studying of course content using	provided materials (self-study)	
20 h studying of course content using		
80 h studying of course content throu	gh exercises / case studies (self-study)	
60 h lecture and exercise course (atte	endance)	
Conditions:		
Basics in solid state physics		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Applied Magne	tic Materials and Methods	
Mode of Instruction: lecture		
Language: English		
Language: English Contact Hours: 3		
Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description Contents: see module description		

Part of the Module: Applied Magnetic Materials and Methods (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Applied Magnetic Materials and Methods

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Applied Magnetic Materials and Methods

Module PHM-0052: Solid Stat Radiation and Neutrons	te Spectroscopy with Synchrotron	6 ECTS/LP
Solid State Spectroscopy with Syn	chrotron Radiation and Neutrons	
Version 1.0.0 (since WS09/10)		
Person responsible for module: Pr	of. Dr. Christine Kuntscher	
Contents:		
-	, ру	meter, interferometer [2]
Learning Outcomes / Competen The students:	ces:	
 have acquired the skills of for the field of solid state spectre 	I with current problems in solid state spectro methods for application.	spectroscopy and can apply these in
Workload: Total: 180 h 20 h studying of course content us 20 h studying of course content us 60 h lecture and exercise course (80 h studying of course content the	ing provided materials (self-study)	
Conditions: basic knowledge in solid-state phy	sics	
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Solid State S Mode of Instruction: lecture Language: English Contact Hours: 3	Spectroscopy with Synchrotron Radiation	and Neutrons
Learning Outcome: see module description		

Contents:

see module description

- H. Kuzmany, Solid State Spectroscopy (Springer)
- N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston)
- J. M. Hollas, Modern Spectroscopy

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (lecture)

*(online/digital) *

Part of the Module: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial) (exercise course) *(online/digital) *

Examination

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

Module PHM-0051: Biophysic Biophysics and Biomaterials	cs and Biomaterials	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: D	r. Stefan Thalhammer	
Contents: • Radiation Biophysics • Microfluidics • Membranes • Membranal transport		
Learning Outcomes / Competen The students:	ces:	
 learn models of the (bio)poly neuronal networks, adapt skills in the independent translate a biological oberset Integrated acquirement of set 	and phenomena of biological physics, mer-theory, microfluidic, radiation biophys ent processing of problems and deal with c ervation into a physical question. oft skills: autonomous working with speciali pacity for teamwork, ability to document ex	urrent literature. They will be able to st literature in english, acquisition of
	sing provided materials (self-study) rough exercises / case studies (self-study)	
Conditions: Mechanics, Thermodynamics, Sta Molecular Biology	tistical Physics, basic knowledge in	
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Biophysics Mode of Instruction: lecture Language: English Contact Hours: 3	and Biomaterials	
Learning Outcome: see module description		

ontent	S:
•	Radiation Biophysics
	 Radiation sources Interaction of radiation with biological matter Radiation protection principles Low dose radiation LNT model in radiation biophysics Microfluidics
	 Life at Low Reynolds Numbers The Navier-Stokes Equation Low Reynolds Numbers – The Stokes Equation Breaking the Symmetry Membranes
	 Thermodynamics and Fluctuations Thermodynamics of Interfaces Phase Transitions – 2 state model Lipid membranes and biological membranes, membrane elasticity Membranal transport
	 Random walk, friction and diffusion Transmembranal ionic transport and ion channels Electrophysiology of cells Neuronal Dynamics
•	 T. Herrmann, Klinische Strahlenbiologie – kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1 J. Freyschmidt, Handbuch diagnostische Radiologie – Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3 S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110 J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9 lecture notes

Language: English

Contact Hours: 1

Examination

Biophysics and Biomaterials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Biophysics and Biomaterials

		_
Module PHM-0059: Magnetisn Magnetism	1	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: Dr.	Hans-Albrecht Krug von Nidda	
Contents:		
 History, basics 		
-	and quantum phenomenology	
Exchange interaction and me		
Magnetic anisotropy and mag		
Thermodynamics of magnetic		
 Magnetic domains and domains Magnetization processes and 		
 AC susceptibility and ESR 	micro magnetic treatment	
 Spintransport / spintronics 		
 Recent problems of magnetis 	m	
Learning Outcomes / Competenc		
The students:	es.	
for their description, like meanhave the ability to classify diff interpretation, and	d phenomena of magnetic materials and th n-field theory, exchange interactions and n erent magnetic phenomena and to apply th ndently to treat fundamental and typical top it skills.	nicro magnetic models, ne corresponding models for their
Total: 180 h 60 h lecture and exercise course (a 80 h studying of course content thro 20 h studying of course content usin 20 h studying of course content usin	bugh exercises / case studies (self-study) ng literarture (self-study)	
Conditions:		
basics of solid-state physics and qu	antum mechanics	
Frequency: annually	Recommended Semester:	Minimal Duration of the Module:
· · · · · · · · · · · · · · · · · · ·	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Magnetism		
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		
see module description		
Contents:		
see module description		

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Magnetism

written exam / length of examination: 90 minutes

Examination Prerequisites:

Magnetism

Market DUM 0040, Disselation and	To be a factor of the second s	
Module PHM-0048: Physics and Devices	Technology of Semiconductor	6 ECTS/LP
Physics and Technology of Semicond	uctor Devices	
Version 1.0.0 (since WS09/10)		l
Person responsible for module: Prof. [Dr. Hubert J. Krenner	
Contents:		
 Basic properties of semiconduct Semiconductor diodes and trans Semiconductor technology 	ors (electronic bandstructure, doping, car sistors	rier excitations and carrier transport)
Learning Outcomes / Competences	•	
 Basic knowledge of solid-state a excitations, and carrier transport Application of developed concept semiconductors. Application of these concepts to such as diodes and transistors Knowledge of the technologically Integrated acquisition of soft skill presentation techniques, capacit thinking and working. Workload: Total: 180 h 20 h studying of course content using	and semiconductor physics such as electric. bts (effective mass, quasi-Fermi levels) to describe and understand the operation p y relevant methods and tools in semicono lls: autonomous working with specialist lit ty for teamwork, ability to document expe provided materials (self-study) literarture (self-study) gh exercises / case studies (self-study)	describe the basic properties of principles of semiconductor devices ductor micro- and nanofabrication. erature in English, acquisition of
Conditions:		
	owledge in solid state physics, statistical	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Mode of Instruction: lecture Language: English Contact Hours: 3	chnology of Semiconductor Devices	
Learning Outcome: see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Assigned Courses:

Physics and Technology of Semiconductor Devices (lecture)

*(online/digital) *

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Assigned Courses:

Physics and Technology of Semiconductor Devices (Tutorial) (exercise course)

*(online/digital) *

Examination

Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics and Technology of Semiconductor Devices

Module PHM-0049: Nanostructur Nanostructures / Nanophysics	es / Nanophysics	6 ECTS/LP
Version 1.1.0 (since WS09/10) Person responsible for module: Prof. D	r. Hubert J. Krenner	
2. Magnetotransport in low-dimensi	rires and dots, low dimensional electron onal systems, Quanten-Hall-Effect, Qua ells and quantum dots and their application	ntized conductance
 Profound knowledge of low-dime novel functional devices for high- Knowledge of different fabrication Application of these concepts to Integrated acquirement of soft sk 	ntal concepts in modern nanoscale scier nsional semiconductor structures and ho frequency electronics and optoelectronic n approaches using bottom-up and top-d tackle present problems in nanophysics iills: autonomous working with specialist y for teamwork, ability to document expe	ow these systems can be applied for cs lown techniques literature in English, acquisition of
Workload: Total: 180 h 80 h studying of course content through 20 h studying of course content using h 60 h lecture and exercise course (atten 20 h studying of course content using p Conditions: recommended prerequisites: basic kno	iterarture (self-study) idance) provided materials (self-study)	
quantum mechanics.		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Nanostructures / Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4	/ Nanophysics	
Learning Outcome: see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)

Examination

Nanostructures / Nanophysics

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Nanostructures / Nanophysics

Chemical Physics II Version 1.3.0 (since WS09/10) Person responsible for module: Prof. I PD Dr. Georg Eickerling Contents:	Dr. Wolfgang Scherer	
 Introduction to computational ch Hartree-Fock Theory DFT in a nutshell Prediction of reaction mechanism calculation of physical and chem 	ns	
earning Outcomes / Competences	:	
 molecules and solid-state composition have therefore the competence Fock and Density Functional The materials with regard to their chemical 	to autonomously perform simple quantun eory (DFT) and to interpret the electronic	n chemical calculations using Hartree- structure of functional molecules and
Remarks: t is possible for students to do quantu nolecules on a computer cluster within	m chemical calculations autonomously and the scope of the tutorial.	nd analyze electronical structures of
Vorkload: Total: 180 h 60 h lecture and exercise course (atten 60 h studying of course content throug 70 h studying of course content using 70 h studying of course content using	h exercises / case studies (self-study) literarture (self-study)	
Conditions:	the module Chemical Physics I first.	
requency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Physic Mode of Instruction: lecture anguage: English Contact Hours: 3	cs II	

see module description

- I. N. Levine, Quantum Chemistry, Pearson, 7th ed 2013.
- A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Dover, 1996 (EbookCentral ebook).
- E. G. Lewars, Computational Chemistry, Springer, 2011.
- D. C. Young, Computational Chemistry: A practical guide for applying techniques to real world problems, Wiley ebook, **2002**.
- R. A. van Santen, Ph. Sautet, Computational Methods in Catalysis and Materials Science, Wiley ebook, 2009.
- P. Popelier, Atoms in Molecules: An Introduction, Pearson Education Limited, 2000.
- A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburg, PA.

Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Examination

Chemical Physics II

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics II

Coordination Materials	Materials	6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [J
Dr. Hana Bunzen		
Contents:		
A) Basics of coordination Chemistry		
 Historical development of coordi Structures and nomenclature rul Chemical bonds in transition me Stability of transition metal coordinates Characteristic reactions [3] 	es [2] tal coordination compounds [3]	
B) Selected classes of functional mate	rials	
 Bioinorganic chemistry [3] Coordination polymers / metal-o Coordination compounds in med Photochemistry of coordination of 	lical applications [3]	
Learning Outcomes / Competences The students	:	
coordination compounds,	rpret UV/vis absorption spectra and to p f coordination chemistry onto topics of n	
 Integrated acquirement of soft sl 		naterials sciences.
Integrated acquirement of soft sl Remarks:	kills.	naterials sciences.
 Integrated acquirement of soft sl Remarks: ELECTIVE COMPULSORY MODULE Workload: Total: 180 h 60 h lecture and exercise course (attended to be a studying of course content using 20 h studying 20 h st	ndance) literarture (self-study)	haterials sciences.
 Integrated acquirement of soft sl Remarks: ELECTIVE COMPULSORY MODULE Workload: Total: 180 h 60 h lecture and exercise course (attended to be a studying of course content using 20 h studying 20 h st	kills. ndance) literarture (self-study) provided materials (self-study) jh exercises / case studies (self-study)	
 Integrated acquirement of soft sl Remarks: ELECTIVE COMPULSORY MODULE Workload: Total: 180 h 60 h lecture and exercise course (attended) 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug B0 h studying of course content throug Conditions: Recommended: The lecture course is 	kills. ndance) literarture (self-study) provided materials (self-study) jh exercises / case studies (self-study)	Minimal Duration of the Module: 1 semester[s]

Part of the Module: Coordination Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Coordination Materials written exam / length of examination: 90 minutes

Examination Prerequisites: Coordination Materials

Module PHM-0113: Advanced Sc Advanced Solid State Materials	lid State Materials	6 ECTS/LP
Version 1.0.0 (since WS10/11) Person responsible for module: Prof. D	or. Henning Höppe	
Contents: • Repitition of concepts • Novel silicate-analogous materia • Luminescent materials • Pigments • Heterogeneous catalysis	ls	
 acquire skills to predict the prope 	ations between composition, structure erties of chemical compounds, based of potential of functional materials for fu operties of these materials.	•
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using l 80 h studying of course content throug 20 h studying of course content using p	iterarture (self-study) h exercises / case studies (self-study)	
Conditions: Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis	•	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 3	State Materials	
Learning Outcome: see module description		
Contents: see module description		
Literature: • A. West, Solid State Chemist • L. Smart, E. Moore, Solid Sta		

Scripts Solid State Chemistry and Chemistry I and II

Part of the Module: Advanced Solid State Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Literature:

- A. West, Solid State Chemistry and Its Applications
- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

Examination

Advanced Solid State Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced Solid State Materials

Module PHM-0218: Novel Method	Is in Solid State NMR Spectro-	6 ECTS/LP
scopy Noval Mathada in Salid Stata NMB Sad		
Novel Methods in Solid State NMR Spe	ectroscopy	
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. D	r Leo van Wüllen	
Contents:		
Contents: The physical basis of nuclear magnetic	resonance	
Pulsed NMR methods; Fourier Transfor		
Internal interactions		
Magic Angle Spinning		
	ain apositic information about the struct	ure and dynamics of solid materials
	ain specific information about the struct	-
	nodern solid state NMR in materials scie	3nce
Workload: Total: 180 h		
Conditions:		Credit Requirements:
none		Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Novel Methods in	n Solid State NMR Spectroscopy	
Mode of Instruction: lecture		
Language: German Contact Hours: 3		
	n Solid State NMR Spectroscopy (Tut	orial)
Mode of Instruction: exercise course Language: German		
Contact Hours: 1		
Literature:		
1. M. H. Levitt, Spin Dynamics, Joh	n Wiley and Sons, Ltd., 2008.	
2. H. Günther, NMR spectroscopy,	Wiley 2001.	
3. M.Duer, Introduction to Solid-Sta	te NMR spectroscopy, Blackwell Publish	ning Ltd., 2004.
4. D. Canet: NMR - concepts and m	nethods, Springer, 1994.	
Examination		
Examination Novel Methods in Solid State NMR S	pectroscopy	

written ever (length of everyingtion 00 minutes

written exam / length of examination: 90 minutes

Module PHM-0167: Oxidation and Corrosion Oxidation and Corrosion	6 ECTS/LP
Version 1.0.0 (since SoSe15)	
Person responsible for module: Prof. Dr. Ferdinand Haider	
Contents:	
Introduction	
Review of thermodynamics	
Chemical equilibria	
Electrochemistry	
Electrode kinetics	
High temperature oxidation	
Localized corrosion	
 Shallow pit corrosion Pitting corrosion Crevice corrosion Intercrystalline corrosion Stress corrosion cracking Fatigue corrosion Erosion corrosion Galvanic corrosion 	
Water and seawater corrosion	
Corrosion monitoring	
Corrosion properties of specific materials	
Specific corrosion problems in certain branches	
Oil and Gas industryAutomobile industryFood industry	
Corrosion protection	
 Passive layers Reaction layers (Diffusion layers) Coatings (organic, inorganic) Cathodic, anodic protection Inhibitors 	
 Learning Outcomes / Competences: The students: know the the fundamental basics, mechanics, and types of corrosion pr obtain specific knowledge of one type of corrosion. 	rocesses,
Workload: Total: 180 h 60 h lecture and exercise course (attendance) 120 h studying of course content using provided materials (self-study)	
Conditions: Recommended: good knowledge in materials science, basic knowledge in physical chemistry	Credit Requirements: written exam (90 min)

Frequency: each winter semester	Recommended Semester: from 3.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Oxidation and Corrosion

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Schütze: Corrosion and Environmental Degradation

Part of the Module: Oxidation and Corrosion (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Oxidation and Corrosion

written exam / length of examination: 90 minutes

Examination Prerequisites:

Oxidation and Corrosion

Module PHM-0164: Characteriza Characterization of Composite Materi		6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Markus Sause	
Contents:		
The following topics are presented:		
Introduction to composite mater		
 Applications of composite mate Mechanical testing 	riais	
Thermophysical testing		
Nondestructive testing		
Learning Outcomes / Competences The students:		
are introduced to important con		omposite materials. I material models applied to composites. opic using various forms of information.
Workload:		
Total: 180 h		
20 h studying of course content using		
20 h studying of course content using 60 h lecture and exercise course (atte		
-	gh exercises / case studies (self-study)	
Conditions:		
Recommended: basic knowledge in n composite materials	naterials science, particularly in	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination regulations of the study program	
Parts of the Module	1	
	n of Composite Materials	

Part of the Module: Characterization of Composite Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Characterization of Composite Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Characterization of Composite Materials

 Fiber Reinforced Composites: Processing a Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Si Frau Dr. Judith Moosburger-Will Contents: The following topics are treated: production of fibers (e.g. glass, carbo Physical and chemical properties of f Physical and chemical properties of f Semi-finished products Composite production technologies Application of fiber reinforced materia Learning Outcomes / Competences: Know the application areas of compo know the basics of production technologies are introduced to physical and chemi are able to independently acquire fur Remarks: ELECTIVE COMPULSORY MODULE Workload: Total: 180 h N h studying of course content through ex 20 h studying of course content using litera 	iegfried Horn on, or ceramic fibers) fibers and their precursor materials commonly used polymeric and ceran als site materials. plogies of fibers, polymeric, and cera	mic matrices and fiber reinforced d fiber reinforced materials.
 The following topics are treated: production of fibers (e.g. glass, carbo Physical and chemical properties of f Physical and chemical properties of o Semi-finished products Composite production technologies Application of fiber reinforced materia Learning Outcomes / Competences: The students: know the application areas of compo know the basics of production technologies are introduced to physical and chemi are able to independently acquire fur Remarks: ELECTIVE COMPULSORY MODULE Workload: Total: 180 h 80 h studying of course content through ex	ibers and their precursor materials commonly used polymeric and ceran als site materials. plogies of fibers, polymeric, and cera	mic matrices and fiber reinforced d fiber reinforced materials.
 production of fibers (e.g. glass, carbo Physical and chemical properties of f Physical and chemical properties of o Semi-finished products Composite production technologies Application of fiber reinforced materia Learning Outcomes / Competences: The students: know the application areas of compo know the basics of production technor materials. are introduced to physical and chemii are able to independently acquire fur Remarks: ELECTIVE COMPULSORY MODULE Workload: Total: 180 h 80 h studying of course content through ex	ibers and their precursor materials commonly used polymeric and ceran als site materials. plogies of fibers, polymeric, and cera	mic matrices and fiber reinforced d fiber reinforced materials.
 The students: know the application areas of compo know the basics of production technomaterials. are introduced to physical and chemi are able to independently acquire fur Remarks: ELECTIVE COMPULSORY MODULE Workload: Total: 180 h 80 h studying of course content through ex	blogies of fibers, polymeric, and cera	d fiber reinforced materials.
 know the application areas of compo know the basics of production technomaterials. are introduced to physical and chemi are able to independently acquire fur Remarks: ELECTIVE COMPULSORY MODULE Workload: Total: 180 h 80 h studying of course content through ex	blogies of fibers, polymeric, and cera	d fiber reinforced materials.
ELECTIVE COMPULSORY MODULE Workload: Total: 180 h 80 h studying of course content through ex		
Total: 180 h 80 h studying of course content through ex		
20 h studying of course content using provi 60 h lecture and exercise course (attendan	nture (self-study) ided materials (self-study)	
Conditions: Recommended: basic knowledge in materia	als science, basic lectures in	
	commended Semester: m 1.	Minimal Duration of the Module: 1 semester[s]
4 ac	peat Exams Permitted: cording to the examination gulations of the study program	
Parts of the Module		1

Language: English Contact Hours: 3

- Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (lecture)

*(online/digital) *

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (Tutorial) (exercise course)

*(online/digital) *

Examination

Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes

Examination Prerequisites:

Fiber Reinforced Composites: Processing and Materials Properties

Module PHM-0165: Introduction		6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D Dr Ing. Johannes Schilp	r. Siegfried Horn	
Contents:		
The following topics are treated:		
 Statics and dynamics of objects Transmissions and mechanisms Tension, shear and bending more Hydrostatics Hydrodynamics Strength of materials and solid measureme Mechanical design (including king) 	nechanics nt	
Learning Outcomes / Competences: The students understand and are able		d materials science to:
Engineering applicationsMechanical testingInstrumentationMechanical design		
Workload: Total: 180 h		
Conditions: none		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Mechanical Engi Mode of Instruction: lecture Language: English Contact Hours: 3	neering	
Part of the Module: Mechanical Engi Mode of Instruction: exercise course Language: English Contact Hours: 1	neering (Tutorial)	

Examination

Introduction to Mechanical Engineering

written exam / length of examination: 90 minutes

Examination Prerequisites:

Introduction to Mechanical Engineering

Module MRM-0052: Functional P	olymers	6 ECTS/L
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D	r. Klaus Ruhland	
Contents:		
 Introduction to polymer science 		
 Elastomers and elastoplastic matrix 	terials	
 Memory-shape polymers 		
 Piezoelectric polymers 		
Electrically conducting polymers		
 Ion-conducting polymers 		
 Magnetic polymers 		
 Photoresponsive polymers 		
Polymers with second order non-	-linear optical properties	
Polymeric catalysts		
Self-healing polymers		
 Polymers in bio sciences> 		
Workload: Total: 180 h		
20 h studying of course content using p		
80 h studying of course content throug	h exercises / case studies (self-study)	
20 h studying of course content using I 60 h lecture and exercise course (atter Conditions:		
60 h lecture and exercise course (atten	ndance) 035 (Chemie I), PHM-0036 (Chemie II)	
60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-00 and MRM-0050 (Grundlagen der Polyn	ndance) 035 (Chemie I), PHM-0036 (Chemie II) nerchemie und -physik)	
60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-00 and MRM-0050 (Grundlagen der Polyn	ndance) 035 (Chemie I), PHM-0036 (Chemie II)	Minimal Duration of the Module: 1 semester[s]
60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-00 and MRM-0050 (Grundlagen der Polyn Frequency: each summer semester	ndance) 035 (Chemie I), PHM-0036 (Chemie II) nerchemie und -physik) Recommended Semester:	
60 h lecture and exercise course (atter Conditions: Recommended: Attendance to PHM-00	ndance) 035 (Chemie I), PHM-0036 (Chemie II) nerchemie und -physik) Recommended Semester: from 2.	
60 h lecture and exercise course (atter Conditions: Recommended: Attendance to PHM-00 and MRM-0050 (Grundlagen der Polyn Frequency: each summer semester Contact Hours:	ndance) 035 (Chemie I), PHM-0036 (Chemie II) nerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted:	
60 h lecture and exercise course (atten Conditions: Recommended: Attendance to PHM-00 and MRM-0050 (Grundlagen der Polyn Frequency: each summer semester Contact Hours:	D35 (Chemie I), PHM-0036 (Chemie II) nerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	

Part of the Module: Functional Polymers

Mode of Instruction: lecture Language: English

Contact Hours: 3

Part of the Module: Functional Polymers (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Functional Polymers

written exam / length of examination: 90 minutes

Examination Prerequisites:

Functional Polymers

Module PHM-0168: Modern Metal Modern Metallic Materials	lic Materials	6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	r. Ferdinand Haider	
Contents: Introduction		
Review of physical metallurgy		
Steels:		
 principles common alloying elements martensitic transformations dual phase steels TRIP and TWIP steels maraging steel electrical steel production and processing 		
Aluminium alloys:		
 2xxx 6xxx 7xxx Processing – creep forming, hydr 	oforming, spinforming	
Titanium alloys		
Magnesium cast alloys		
Superalloys		
Intermetallics, high entropy alloys		
Copper, brass, bronzes		
Metallic glasses		
Alloy design		
Learning Outcomes / Competences: Students	tallic alloys, their properties and how the	ese properties can be derived from
basic concepts		
Workload: Total: 180 h 60 h lecture and exercise course (atten 20 h studying of course content using p 20 h studying of course content using li 80 h studying of course content through	rovided materials (self-study) terarture (self-study)	
Conditions: Recommended: Knowledge of physical		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]

Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Moder	n Metallic Materials	
Mode of Instruction: lectur	e	
Language: English		
Contact Hours: 4		
Literature:		
Cahn-Haasen-Kramer: N	laterials Science and Technology	
Original literature		
-		
Examination		
Modern Metallic Materials		
written exam / length of examination: 90 minutes		

Examination Prerequisites:

Modern Metallic Materials

Module PHM-0196: Surfaces and Surfaces and Interfaces II: Joining proc		6 ECTS/LP
Version 1.1.0 (since WS15/16) Person responsible for module: Prof. D Dozenten: Prof. Dr. Siegfried Horn, Dr.	-	
Learning Outcomes / Competences: The students		
	esion	
Workload: Total: 180 h		
Conditions: Basic knowledge on materials science, Module Surfaces and Interfaces (PHM-		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: any	
Parts of the Module		
Part of the Module: Surfaces and Int Mode of Instruction: lecture Lecturers: Prof. Dr. Siegfried Horn Language: German Contact Hours: 3	erfaces II: Joining processes	
Contents: The following topics are treated:		
 Introduction to adhesion Role of surface and interface prop Introduction to interactions at surfa Adhesion theories Surface and interface energy Surface treatment techniques Joining techniques Physical and chemical properties of Applications 	aces and interfaces	
Lehr-/Lernmethoden: Lecture: Beamer presentation and I Exercise: Exercises on recent topic		
Literature: Literature, including actual scientific	papers and reviews, will be announced	at the beginning of the lecture.

Examination

Surfaces and Interfaces II: Joining processes

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces II: Joining processes

Parts of the Module

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course Language: German Contact Hours: 1

Non-Destructive Testing	ictive Testing	6 ECTS/LP
Version 1.0.0 (since WS14/15)		
Person responsible for module: Prof.	. Dr. Markus Sause	
Contents:		
Introduction to nondestructive	testing methods	
 Visual inspection 		
Ultrasonic testing		
Guided wave testing		
Acoustic emission analysisThermography		
Radiography		
 Eddy current testing 		
Specialized nondestructive me	ethods	
Learning Outcomes / Competence	es:	
The students		
 acquire knowledge in the field 	of nondestructive evaluation of material	S,
	ncepts in nondestructive measurement t	-
	uire further knowledge of the scientific to	pic using various forms of information.
Integrated acquirement of soft	SKIIIS	
Workload: Total: 180 h		
60 h lecture and exercise course (at	tendance)	
20 h studying of course content usin	-	
20 h studying of source contact		
20 In studying or course content usin	g provided materials (self-study)	
	g provided materials (self-study) ugh exercises / case studies (self-study)	·
80 h studying of course content through	ugh exercises / case studies (self-study)	
80 h studying of course content thron Conditions: Basic knowledge on materials science	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester:	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science	ugh exercises / case studies (self-study)	
80 h studying of course content throu Conditions:	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted:	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours:	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted:	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English Contact Hours: 3	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- · Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- · Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Non-Destructive Testing (lecture)

*(online/digital) *

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Non-Destructive Testing (Tutorial) (exercise course)

*(online/digital) *

Examination

Non-Destructive Testing

written exam / length of examination: 90 minutes

Examination Prerequisites:

Non-Destructive Testing

Mechanics, Thermodynamics Best Frequency: each winter semester Recommended Semester: Mini	6 ECTS/LP
Person responsible for module: Prof. Dr. Achim Wixforth Dr. Christoph Westerhausen Contents: Physical principles in Biology Cell components and their material properties: cell membrane, organelles, cyter Thermodynamics of proteins and biological membranes Physical methods and techniques for studying cells Cell adhesion – interplay of specific, universal and elastic forces Tensile strength and elasticity of tissue - macromolecules of the extra cellular of Micro mechanics and properties of the cell as a biomaterial Cell-cell-communication Cell migration Cell stimulation and cell-computer-communication Cell stimulation and cell-computer-communication Cell stimulation and cell-computer of human cells, as building blocks of liv properties. I learn the basics on physical properties of human cells, as building blocks of liv properties. I learn about the impact of forces on the behavior of living cells learn physical description of fundamental biological processes and properties are able to express biophysical questions and define model systems to answe The students learn the following key qualifications: Self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using literature (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content using literature (self-study) 80 h studyi	
Contents: • Physical principles in Biology • Cell components and their material properties: cell membrane, organelles, cyte • Thermodynamics of proteins and biological membranes • Physical methods and techniques for studying cells • Cell adhesion – interplay of specific, universal and elastic forces • Tensile strength and elasticity of tissue - macromolecules of the extra cellular of Micro mechanics and properties of the cell as a biomaterial • Cell-cell-communication • Cell migration • Cell timulation and cell-computer-communication Learning Outcomes / Competences: The students • get to know a highly interdisciplinary field of physics. • learn the basics on physical properties of human cells, as building blocks of liv properties. • learn about the impact of forces on the behavior of living cells • learn about the impact of forces on the behavior of living cells • learn about the impact of forces on the behavior of living cells • learn bhysical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answe The students learn the following key qualifications: • self-dependent working with English specialist literature. • presentation techniques. • documentation of experimental results.	
 Physical principles in Biology Cell components and their material properties: cell membrane, organelles, cyte Thermodynamics of proteins and biological membranes Physical methods and techniques for studying cells Cell adhesion – interplay of specific, universal and elastic forces Tensile strength and elasticity of tissue - macromolecules of the extra cellular of Micro mechanics and properties of the cell as a biomaterial Cell-cell-communication Cell coll-communication Cell migration Cell stimulation and cell-computer-communication Learning Outcomes / Competences: The students get to know a highly interdisciplinary field of physics. learn the basics on physical properties of human cells, as building blocks of liv properties. learn about the impact of forces on the behavior of living cells learn about the impact of forces on the behavior of living cells learn about the impact of forces on the behavior of living cells are able to express biophysical questions and define model systems to answer The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of cou	
Cell components and their material properties: cell membrane, organelles, cyte Thermodynamics of proteins and biological membranes Physical methods and techniques for studying cells Cell adhesion – interplay of specific, universal and elastic forces Tensile strength and elasticity of tissue - macromolecules of the extra cellular i Micro mechanics and properties of the cell as a biomaterial Cell-cell-communication Cell stimulation and cell-computer-communication Cell attends get to know a highly interdisciplinary field of physics. learn the basics on physical properties of human cells, as building blocks of liv properties. learn about the impact of forces on the behavior of living cells learn physical description of fundamental biological processes and properties or are able to express biophysical questions and define model systems to answe The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: for h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studie	
Thermodynamics of proteins and biological membranes Physical methods and techniques for studying cells Cell adhesion – interplay of specific, universal and elastic forces Tensile strength and elasticity of tissue - macromolecules of the extra cellular i Micro mechanics and properties of the cell as a biomaterial Cell-cell-communication Cell stimulation and cell-computer-communication Cell at the basics on physical properties of human cells, as building blocks of liv properties. Iearn the basics on physical properties of human cells, as building blocks of liv properties. Iearn about the impact of forces on the behavior of living cells Iearn physical description of fundamental biological processes and properties or are able to express biophysical questions and define model systems to answe The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of cou	
 Physical methods and techniques for studying cells Cell adhesion – interplay of specific, universal and elastic forces Tensile strength and elasticity of tissue - macromolecules of the extra cellular i Micro mechanics and properties of the cell as a biomaterial Cell-communication Cell migration Cell stimulation and cell-computer-communication Learning Outcomes / Competences: The students get to know a highly interdisciplinary field of physics. learn the basics on physical properties of human cells, as building blocks of liv properties. learn about the impact of forces on the behavior of living cells learn about the impact of forces on the behavior of living cells learn about the impact of forces on the behavior of living cells learn bysical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answe The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 80 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) Conditions: Frequency: each winter semester Recommended Semester: from 1. term 80 contact Hours: A gepat Exams Permitted: according to the examination 	toskeleton
Cell adhesion – interplay of specific, universal and elastic forces Tensile strength and elasticity of tissue - macromolecules of the extra cellular i Micro mechanics and properties of the cell as a biomaterial Cell-cell-communication Cell stimulation and cell-computer-communication the students each of the basics on physical properties of human cells, as building blocks of liv properties. learn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answe The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h study	
Tensile strength and elasticity of tissue - macromolecules of the extra cellular i Micro mechanics and properties of the cell as a biomaterial Cell-cell-communication Cell migration Cell stimulation and cell-computer-communication Learning Outcomes / Competences: The students get to know a highly interdisciplinary field of physics. learn the basics on physical properties of human cells, as building blocks of liv properties. learn about the impact of forces on the behavior of living cells learn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answe The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies	
 Micro mechanics and properties of the cell as a biomaterial Cell-cell-communication Cell migration Cell stimulation and cell-computer-communication Learning Outcomes / Competences: The students get to know a highly interdisciplinary field of physics. learn the basics on physical properties of human cells, as building blocks of liv properties. learn about the impact of forces on the behavior of living cells learn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answe The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 80 h studying of course content using literature (self-study) 80 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study)	matrix
Cell migration Cell stimulation and cell-computer-communication Learning Outcomes / Competences: The students get to know a highly interdisciplinary field of physics. learn the basics on physical properties of human cells, as building blocks of liv properties. learn about the impact of forces on the behavior of living cells learn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answe The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) Conditions: Frequency: each winter semester 4	
Cell stimulation and cell-computer-communication Learning Outcomes / Competences: The students get to know a highly interdisciplinary field of physics. learn the basics on physical properties of human cells, as building blocks of live properties. learn about the impact of forces on the behavior of living cells learn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answet The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literature (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course conten	
Learning Outcomes / Competences: The students • get to know a highly interdisciplinary field of physics. • learn the basics on physical properties of human cells, as building blocks of liv properties. • learn about the impact of forces on the behavior of living cells • learn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answere the students learn the following key qualifications: • self-dependent working with English specialist literature. • presentation techniques. • documentation of experimental results. • interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course c	
The students • get to know a highly interdisciplinary field of physics. • learn the basics on physical properties of human cells, as building blocks of liv properties. • learn about the impact of forces on the behavior of living cells • learn about the impact of forces on the behavior of living cells • learn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answere the students learn the following key qualifications: • are able to express biophysical questions and define model systems to answere the students learn the following key qualifications: • self-dependent working with English specialist literature. • presentation techniques. • documentation of experimental results. • interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through e	
 get to know a highly interdisciplinary field of physics. learn the basics on physical properties of human cells, as building blocks of liv properties. learn about the impact of forces on the behavior of living cells learn physical description of fundamental biological processes and properties are able to express biophysical questions and define model systems to answer the students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study)	
 learn the basics on physical properties of human cells, as building blocks of liv properties. learn about the impact of forces on the behavior of living cells learn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answet the students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 80 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) Conditions: Recommended Semester: from 1. 1 se Contact Hours: A cording to the examination Kepeat Exams Permitted: according to the examination 	
properties. Iearn about the impact of forces on the behavior of living cells Iearn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answer The students learn the following key qualifications: • self-dependent working with English specialist literature. • presentation techniques. • documentation of experimental results. • interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studie	
 learn about the impact of forces on the behavior of living cells learn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answer The students learn the following key qualifications: are able to express biophysical questions and define model systems to answer The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 for the content of the content of the courtent of the content of the content of the courtent of the co	ving organisms and their material
 learn physical description of fundamental biological processes and properties of are able to express biophysical questions and define model systems to answer The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) Conditions:	
 are able to express biophysical questions and define model systems to answer The students learn the following key qualifications: self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) Recommended Semester: from 1. 1 se Contact Hours: 4 Repeat Exams Permitted: according to the examination 	of biomaterials
The students learn the following key qualifications: • self-dependent working with English specialist literature. • presentation techniques. • documentation of experimental results. • interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / loss studies (self-study) 80 h studying of course content through exercises / loss studies (self-study) 80 h studying of course content through exercises / loss studies (self-study) 80 h studying of course content through exercises / loss studies (self-study) 80 h studying of course content through exercises / loss studies (self-study) 80 h studying of course content through exercises / loss studies	
 self-dependent working with English specialist literature. presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) Conditions: Mechanics, Thermodynamics Frequency: each winter semester Recommended Semester: from 1. Contact Hours: 4 Repeat Exams Permitted: according to the examination	
 presentation techniques. documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studyi	
 documentation of experimental results. interdisciplinary thinking and working. Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises	
Workload: 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) Recommended Semester: Mechanics, Thermodynamics Frequency: each winter semester Repeat Exams Permitted: 4	
60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / ca	
60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / ca	
20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) Conditions: Create the study through exercises for the study through exercises for the examination 4 Repeat Exams Permitted: according to the examination	
80 h studying of course content through exercises / case studies (self-study) Cree Conditions: Best Mechanics, Thermodynamics Best Frequency: each winter semester Recommended Semester: Mining from 1. 1 set Contact Hours: Repeat Exams Permitted: according to the examination	
Conditions: Creat Mechanics, Thermodynamics Best Frequency: each winter semester Recommended Semester: Minitian of the semester from 1. 1 se Contact Hours: Repeat Exams Permitted: according to the examination	
Mechanics, Thermodynamics Best Frequency: each winter semester Recommended Semester: from 1. Minitian Contact Hours: Repeat Exams Permitted: according to the examination Image: Contact Hours	
Frequency: each winter semesterRecommended Semester: from 1.Min 1 seContact Hours: 4Repeat Exams Permitted: according to the examinationA	dit Requirements:
from 1. 1 se Contact Hours: Repeat Exams Permitted: according to the examination	tehen der Modulprüfung
Contact Hours: Repeat Exams Permitted: 4 according to the examination	imal Duration of the Module:
4 according to the examination	emester[s]
regulations of the study program	
Parts of the Module	
Part of the Module: Physics of Cells	

Language: English / German

Contact Hours: 2

Learning Outcome:

see module description

Contents:

see module description

Literature:

- Sackmann, Erich, and Rudolf Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010.
- Nelson, Philip. Biological physics. New York: WH Freeman, 2004.
- Boal, D. Mechanics of the Cell. Cambridge University Press, 2012.
- Lecture notes

Part of the Module: Physics of Cells (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 2

Learning Outcome:

see module description

Contents:

see module description

Literature:

see module description

Examination

Physics of Cells

oral exam / length of examination: 30 minutes

niques	ray and Neutron Diffraction Tech-	6 ECTS/LF
Advanced X-ray and Neutron Diffraction	on Techniques	
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. E PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
Contents: Subjects of the lecture are advanced X	-ray and neutron diffraction techniques:	
 The failure of the standard <i>Indep</i> Beyond the standard model: The How to obtain and analyze expe 	pendent Atom <i>M</i> odel (IAM) in X-ray diffra e multipolar model rimental charge densities sical properties from diffraction data	ction
Learning Outcomes / Competences: The students:		-
neutron diffraction dataknow the basics of the <i>Quantum</i>	e on the reconstruction of accurate electr Theory of Atoms in Molecules pology of the electron density and correla	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atter	h exercises / case studies (self-study) literarture (self-study)	
Conditions: It is recommended to complete the Mo	dule PHM-0053 Chemical Physics I.	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Advanced X-ray Mode of Instruction: lecture Language: English	and Neutron Diffraction Techniques	

Contact Hours: 3

Literature:

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 3. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.
- 4. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 5. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Advanced X-ray and Neutron Diffraction Techniques written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced X-ray and Neutron Diffraction Techniques

and Materials Scientists	Course: Electronics for Physicists	8 ECTS/LF
Method Course: Electronics for	Physicists and Materials Scientists	
Version 1.1.0 (since SoSe15)		
Person responsible for module:	Andreas Hörner	
Contents:		
1. Basics in electronic and e	lectrical engineering [4]	
2. Quadrupole theory [2]		
3. Analog technique, transist		
4. Boolean algebra and logic		
5. Digital electronics and cal		
6. Microprocessors and Netw	works [4]	
7. Basics in Electronic [8]		
8. Implementation of transist	tors [8]	
9. Operational amplifiers [8]		
10. Digital electronics [8]	ant [0]	
11. Practical circuit arrangeme		
Learning Outcomes / Compete The students:	ences:	
have expertise in indepen	design, measuring and control technology, a dent working on circuit problems. They can	
Remarks: ELECTIVE COMPULSORY MO	DULE	
Attendance in the Method Cour	rse: Electronics for Physicists and Mater	ials Scientists (combined lab course
AND lecture) excludes credit po	pints for the lecture Electronics for Physic	ists and Materials Scientists.
	pints for the lecture Electronics for Physic	ists and Materials Scientists.
Workload:	pints for the lecture Electronics for Physic	ists and Materials Scientists.
Workload: Total: 240 h		ists and Materials Scientists.
Workload: Total: 240 h 100 h lecture and exercise cours		ists and Materials Scientists.
Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten	se (attendance)	Credit Requirements:
Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions:	se (attendance)	
Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions: none	se (attendance) It using provided materials (self-study)	Credit Requirements: written report (one per group)
Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions:	se (attendance) at using provided materials (self-study) Recommended Semester:	Credit Requirements: written report (one per group) Minimal Duration of the Module:
Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions: none Frequency: each semester	se (attendance) It using provided materials (self-study) Recommended Semester: from 1.	Credit Requirements: written report (one per group)
Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions: none Frequency: each semester Contact Hours:	se (attendance) at using provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted:	Credit Requirements: written report (one per group) Minimal Duration of the Module:
Workload: Total: 240 h 100 h lecture and exercise cours	se (attendance) at using provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Credit Requirements: written report (one per group) Minimal Duration of the Module:
Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions: none Frequency: each semester Contact Hours:	se (attendance) at using provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted:	Credit Requirements: written report (one per group) Minimal Duration of the Module:
Workload: Total: 240 h 100 h lecture and exercise cours 140 h studying of course conten Conditions: none Frequency: each semester Contact Hours:	se (attendance) at using provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Credit Requirements: written report (one per group) Minimal Duration of the Module:

Contact Hours: 4

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (lecture)

*(online/digital) *

Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course) Mode of Instruction: laboratory course

Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship) *(online/digital) *

Examination

Method Course: Electronics for Physicists and Materials Scientists oral exam / length of examination: 30 minutes

Examination Prerequisites:

Method Course: Electronics for Physicists and Materials Scientists

Description:

Ausnahmefall SoSe 2020: schriftliche Prüfung

Module PHM-0147: Method Cour Method Course: Electron Microscopy	se: Electron Microscopy	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Ferdinand Haider	
Contents:		
 Scanning electron microscopy (\$ Transmission electron microscop 	-	
Learning Outcomes / Competences The students:		
lectures to teach the theoretical	canning electron microscopy and trans basics, which are afterwards deepene s using different electron microscopy t	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 90 h lecture and exercise course (atter 150 h studying of course content using	-	
Conditions: Recommended: knowledge of solid-sta	ate physics, reciprocal lattice	Credit Requirements: regular participation, oral presentation (10 min), written report (one report per group)
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	Electron Microscopy	

Contents:

SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Electron Microscopy report Examination Prerequisites: Method Course: Electron Microscopy

Module PHM-0148: Method Course: Optical Properties of		8 ECTS/LP
Version 1.2.0 (since SoSe15) Person responsible for module: Prof. [Dr. Joachim Deisenhofer	
Contents: Electrodynamics of solids		
Maxwell equationsElectromagnetic wavesRefraction and interference, Fre	snel equations	
FTIR spectroscopy		
Fourier transformationMichelson-Morley and Genzel inSources and detectors	terferometer	
Terahertz Time Domain spectroscopy		
Generation of pulsed THz radiatGated detection, Austin switches		
Elementary excitations in solid materia	als	
 Rotational-vibrational bands Infrared-active phonons Interband excitations Crystal-field excitations 		
Learning Outcomes / Competences The students:	:	
	-	
Remarks:		
Workload: Total: 240 h 30 h studying of course content using 90 h studying of course content throug 30 h studying of course content using 90 h lecture and exercise course (atte	h exercises / case studies (self-study) literarture (self-study)	
Conditions:		Credit Requirements:
Recommended: basic knowledge in so electrodynamics and optics	olid-state physics, basic knowledge in	written report
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Eugene Hecht, Optics, Walter de Gruyter

Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Optical Properties of Solids report Examination Prerequisites: Method Course: Optical Properties of Solids

Module PHM-0149: Method Cour Method Course: Methods in Biophysic.		8 ECTS/L
Version 1.0.0 (since SoSe15)		
Person responsible for module: Dr. Ste	efan Thalhammer	
Contents:		
Unit radiation biophysics		
 Concepts in radiation protection Low-dose irradiation biophysics DNA repair dynamics of living ce Confocal scanning laser microsometry 	-	
Unit microfluidic		
Microfluidic systemsAccoustic driven microfluidicsCalculation of microfluidic proble	ms	
Unit analysis		
Learning Outcomes / Competences: The students:		
technologies of microfluidic analy	mmun-histochemical staining procedu confocal scanning microscopy, oblems on small length scales,	
Remarks: ELECTIVE COMPULSORY MODULE	Helmholtz Contor Munich	
The course will partly take place at the Workload:		
Total: 240 h		
Conditions:		Credit Requirements:
Attendance of the lecture "Biophysics	and Biomaterials"	1 written lab report
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English	Methods in Biophysics	

Part of the Module: Method Course: Methods in Biophysics (Practical Course) Mode of Instruction: laboratory course Language: English Contact Hours: 4

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

Examination

Method Course: Methods in Biophysics report

Examination Prerequisites:

Method Course: Methods in Biophysics

and Characterization Method Course: Porous Materials - S	rrse: Porous Materials - Synthesis	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Dirk Volkmer	
Contents: Synthesis of porous functional materia Frameworks)	als (e.g. aerogels, mesoporous silica mat	erials, zeolites, Metal-Organic
Characterization methods		
 Structure and composition (XRI Thermal analysis (TGA) Adsorption and diffusion (BET, Catalytic properties (GC/MS, TR 	pore size distribution, pulse chemisorptio	n)
Learning Outcomes / Competences The students will learn how to	5:	
use modern solid state preparaemploy analytical methods dedited	tion techniques (e.g. hydrothermal, solvot icated to porous materials.	hermal, microwave synthesis),
Remarks: ELECTIVE COMPULSORY MODULI	E	
Total: 240 h 120 h internship / practical course (at 80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using	gh exercises / case studies (self-study) literarture (self-study)	
Conditions: Recommended: lecture Functional Po		Credit Requirements: written report (editing time 3 weeks) +
		written exam Please note that final grade of the Method Course consists of the maximum point score of of the exam and the grade of the report of the practical part which are weighted (40:60).
Frequency: each winter semester	Recommended Semester: from 1.	Please note that final grade of the Method Course consists of the maximum point score of of the exam and the grade of the report of the practical part which are weighted

Part of the Module: Method Course: Porous Materials Synthesis and Characterization (Practical Course) Mode of Instruction: laboratory course Language: English

Contact Hours: 4

Examination

Method Course: Porous Materials Synthesis and Characterization

written exam / length of examination: 45 minutes

Examination Prerequisites:

Method Course: Porous Materials Synthesis and Characterization

Module PHM-0153: Method Cour ting Materials Method Course: Magnetic and Superco		8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	or. Philipp Gegenwart	
Contents: Methods of growth and characterization	n:	
Sample preparation (bulk materials and	d thin films), e.g.,	
arcmeltingflux-growthsputtering and evaporation		
Sample characterization, e.g.,		
 X-ray diffraction electron microscopy, scanning tu magnetic susceptibility, electrical specific heat 	• • • • •	
Learning Outcomes / Competences: The students		
thin-film growth, X-ray diffractionare trained in planning and perfolearn to evaluate and analyze the	, magnetic susceptibility, dc-conductivity	problems in experimental solid state
Workload: Total: 240 h 90 h lecture and exercise course (atter 30 h studying of course content using p 90 h studying of course content throug 30 h studying of course content using l	provided materials (self-study) h exercises / case studies (self-study)	
Conditions: Recommended: basic knowledge in so mechanics	lid state physics and quantum	Credit Requirements: presentation and written report on the experiments (editing time 3 weeks, max. 30 pages)
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English	Magnetic and Superconducting Mate	erials

Contact Hours: 2

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (lecture)

*(online/digital) *

Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: Magnetic and Superconducting Materials report Examination Prerequisites: Method Course: Magnetic and Superconducting Materials

Module PHM-0154: Method Cour Spectroscopy Method Course: Modern Solid State N		8 ECTS/LP
Version 2.0.0 (since SoSe17) Person responsible for module: Prof. [Dr. Leo van Wüllen	
Contents: Physical foundations of NMR spectros	сору	
Internal interactions in NMR spectrosc	ору	
Chemical shift interactionDipole interaction andQuadrupolar interaction		
Magic Angle Spinning techniques		
Modern applications of NMR in materia	als science	
Experimental work at the Solid-State N	IMR spectrometers, computer-aided ar	alysis and interpretation of acquired data
gain basic practical knowledge c	sical foundations of modern Solid-State of operating a solid-state NMR spectron erform, and analyze modern solid-state	neter,
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 30 h studying of course content using 90 h studying of course content throug 30 h studying of course content using 90 h lecture and exercise course (atte	h exercises / case studies (self-study) provided materials (self-study)	
Conditions: The attendance of the lecture "NOVEL SPECTROSCOPY" is highly recomme		Credit Requirements: Bestehen der Modulprüfung
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: seminar Language: English	Modern Solid State NMR Spectrosc	ору

Contact Hours: 2

Literature:

- M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.
- H. Günther NMR spectroscopy, Wiley, 2001.
- M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- D. Canet, NMR concepts and methods, Springer, 1994.

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (seminar)

*(online/digital) *

Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Literature:

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: Modern Solid State NMR Spectroscopy

report / work period for assignment: 2 weeks

Examination Prerequisites:

Method Course: Modern Solid State NMR Spectroscopy

Module PHM-0171: Method Cour Method Course: Coordination Material		8 ECTS/LP
	S 	
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D	Dr. Dirk Volkmer	
Dr. Hana Bunzen	-	_
Contents:		
1. Synthesis of metal complexes:		
-	tal complexes (thermal analysis, UV/vis	spectroscopy, IR spectroscopy, X-ray
diffraction)		
3. Material composition and stability		
4. Functional coordination materials	s (spin-crossover materials, oxygen-car	ying materials)
Learning Outcomes / Competences:	:	
The students will learn how to:		
prepare transition metal complex	es employing modern preparation tech	niques (e.g. microwave synthesis), inert
synthesis conditions (Schlenk ter	chnique),	
characterize coordination compo	ounds by selected analytical techniques,	
 develop functional coordination r 	naterials based on organic / inorganic h	ybrid compounds,
employ X-ray diffraction methods	s for structural analysis.	
Remarks:		
ELECTIVE COMPULSORY MODULE		
Workload:		
Total: 240 h		
20 h studying of course content using	provided materials (self-study)	
80 h studying of course content throug		
20 h studying of course content using I	iterarture (self-study)	
120 h lecture and exercise course (atte	endance)	
Conditions:		Credit Requirements:
none		written report (protocols)
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
requency. each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Medule: Method Course:	Coordination Materials (Practical Co	
Mode of Instruction: laboratory course		uise)
Language: English		
Contact Hours: 4		
Part of the Module: Method Course:	Coordination Materials (Seminar)	
Mode of Instruction: seminar		
Language: English		
Contact Hours: 2		
Literature:		
Chemical databases		
 Primary literature		

Examination Method Course: Coordination Materials (Seminar) seminar Examination Prerequisites: Method Course: Coordination Materials (Seminar)

Materials Method Course: Functional Silicate-an	se: Functional Silicate-analogous	8 ECTS/L
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [Dr. Henning Höppe	
Contents:		
	tional materials according to the topics:	
 Silicate-analogous compounds Luminescent materials / phosphe Pigments Characterization methods: XRD, 	ors spectroscopy (luminescence, UV/vis, F	T-IR), thermal analysis
Learning Outcomes / Competences The students will know how to:		-
 apply classical and modern prep autoclave reactions, use of silica 	heres (e.g. reducing, inert conditions), s from single-crystal data,	ion, sol-gel reaction, precipitation,
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 120 h lecture and exercise course (atte 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	provided materials (self-study) literarture (self-study)	
Conditions: Recommended: attendance to the lect	ure "Advanced Solid State Materials"	Credit Requirements: written report (protocol)
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 6

Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- · describe and classify these structures properly.

Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

Assigned Courses:

Method Course: Functional Silicate-analogous Materials (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: Functional Silicate-analogous Materials

seminar

Examination Prerequisites:

Method Course: Functional Silicate-analogous Materials

Module PHM-0206: Method Cour under Pressure Method Course: Infrared Microspectro		8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. E		
Contents:		
Electrodynamics of solids		
Maxwell equations and electromagneti	ic waves in matter	
Optical variables		
Theories for dielectric function:		
i. Free carriers in metals and semicono		
 ii. Interband absorptions in semicondu iii. Vibrational absorptions iv. Multilayer systems 	ctors and insulators	
FTIR microspectroscopy		
Components of FTIR spectrometers i. Light sources ii. Interferometers iii. Detectors		
Microscope components High pressure experiments Equipment	s	
Pressure calibration		
Experimental techniques under high pr i. IR spectroscopy ii. Raman scattering iii. Magnetic measurements iv. Transport measurements	ressure	
Learning Outcomes / Competences		
The students		
Learn about the basics of the light inte	raction with various materials and the fur	ndamentals of FTIR microspectroscopy
Are introduced to the high pressure eq	uipments used in infrared spectroscopy,	
Learn to carry out infrared microspectr	oscopy experiments under pressure,	
Learn to analyze the measured optical	spectra.	-
Workload: Total: 240 h		
Conditions: none		Credit Requirements: Written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure

Mode of Instruction: lecture

Language: German

Contact Hours: 2

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (lecture)

*(online/digital) *

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure (Practical Course)

Mode of Instruction: laboratory course Language: German Contact Hours: 4

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: Infrared Microspectroscopy under Pressure report

Module PHM-0216: Method Cou	urse: Thermal Analysis	8 ECTS/LP
Method Course: Thermal Analysis		
Version 1.0.0 (since WS16/17)		
Person responsible for module: Prof.	Dr. Ferdinand Haider	
Dr. Robert Horny		
Contents:		
Methods of thermal analysis:		
- Differential Scanning Calorimetry: D	DSC, DTA	
- Thermo-gravimetric Analysis: TG		
- Dilatometry: DIL		
- Dynamic-mechanical Analysis: DM	Ą	
Advanced Methods:		
- Modulated Differential Scanning Ca	lorimetry: MDSC	
- Evolved Gas Analysis: EGA GCMS	, FTIR	
Learning Outcomes / Competence	s:	
The students:		
 get to know the basic principles 	s of thermal analysis	
	al processes in condensed matter ,e.g.	phase transitions and relaxation
processes (metals, polymers, o		
	plex experiments and the usage of adv	anced measurement techniques
 learn how to evaluate and anal 		
Remarks:		
Workload:		
Total: 240 h		
90 h lecture and exercise course (att		
	igh exercises / case studies (self-study))
30 h studying of course content using		
30 h studying of course content using	g provided materials (self-study)	
Conditions:		Credit Requirements:
Recommended: basic knowledge in s	solid-state physics	regular participation, oral presentation
		(10 min), written report
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
-	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
-	regulations of the study program	
Parts of the Module		
	Thermel Anchusic	
Part of the Module: Method Course Mode of Instruction: lecture	e: Thermal Analysis	
Lecturers: Prof. Dr. Ferdinand Haide	51	
Language: English		

Contact Hours: 2

Part of the Module: Method Course: Thermal Analysis (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Examination Method Course: Thermal Analysis report

Module PHM-0221: Method Course: X-ray Diffraction Tec	Irse: X-ray Diffraction Techniques	8 ECTS/LP
Version 1.0.0 (since WS15/16) Person responsible for module: Prof. PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
Contents: Subjects of the practical training and of X-ray diffraction techniques:	the accompanying lecture are the theoret	ical basics and the practical application
Data collection and reduction techniq	ues	
Symmetry and space group determin	ation	
Structural refinements: • The Rietveld method • Difference Fourier synthesis Structure determination:		
Patterson methodDirect methods		
Interpretation of structural refinement	results	
Errors and Pitfalls: twinning and disor	der	
employing X-ray diffraction techhave the skill to perform under	guidance phase-analyses and X-ray struc s-on the structure-property relationships o	ture determinations
Workload: Total: 240 h 30 h studying of course content using 30 h studying of course content using 90 h studying of course content throu 90 h lecture and exercise course (atte	literarture (self-study) gh exercises / case studies (self-study)	
Conditions: none		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: X-ray Diffraction Techniques

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Assigned Courses:

Method Course: X-ray Diffraction Techniques (lecture)

*(online/digital) *

Part of the Module: Method Course: X-ray Diffraction Techniques (Practical Course)

Mode of Instruction: laboratory course Language: German Contact Hours: 4

Assigned Courses:

Method Course: X-ray Diffraction Techniques (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: X-ray Diffraction Techniques

written exam / length of examination: 90 minutes

Module PHM-0234: 2D Materials		6 ECTS/LP
Version 1.0.1 (since SoSe18) Person responsible for module: Prof. [Dr. Hubert J. Krenner	
Contents:		
	to emerging new materials, such as trar	nsition metal dichalcogenides
1. Fabrication		-
2. Optical, electronic and vibrationa	al properties	
3. Applications in advanced function		
Learning Outcomes / Competences		
1. Specify different classes of 2D s	olid state materials and their properties.	
2. Describe and explain preparatio	n and nanofabrication methods for 2D m	naterials.
-	erentiate between suitable optical and s	structural characterization methods for
2D materials.		
 Understand and explain phonon Understand and explain magnet 	properties of 2D materials. o quantum transport phenomena such a	s the quantum Hall effect in graphene
	ion, excitonic and spin properties of tran	
	cuss applications of 2D materials and th	-
optoelectronic, spintronics devic	es and solar energy converstion.	
Workload:		
Total: 180 h		
80 h studying of course content throug	h exercises / case studies (self-study)	
60 h lecture (attendance)		
20 h studying of course content using 20 h studying of course content using		
Conditions:		
recommended prerequisites: basic kno	wledge in solid-state physics and	
quantum mechanics.		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
······································	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: 2D Materials		
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
ECTS Credits: 6.0		
Learning Outcome: see module description		
Contents: see module description		

Examination 2D Materials oral exam / length of examination: 30 minutes Examination Prerequisites: 2D Materials

Module PHM-0235: Method Cour Method Course: 2D Materials	se: 2D Materials	8 ECTS/LP
Version 1.0.1 (since SoSe18) Person responsible for module: Prof. D	Dr. Hubert J. Krenner	J
Contents: 1. Fabrication of monolayers of 2D 2. Characterization of the structural 3. Modelling of selected physical pr	, optical and vibrational properties of 2D) Materials
• • • • • •	tion of fabrication of selected monolayer tion of basic characterization methods for n methods	
Workload: Total: 240 h 90 h lecture and exercise course (atter 30 h studying of course content using p 30 h studying of course content using l 90 h studying of course content throug	provided materials (self-study) iterarture (self-study)	
Conditions: Basic knowledge of solid state physics	, optics and quantum mechancis	Credit Requirements: written report, editing time 3 weeks, max. 30 pages
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	•	• •
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	2D Materials	
Assigned Courses: Method Course: 2D Materials (lecture *(online/digital) *	9)	
Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4		
Assigned Courses: Method Course: 2D Materials (Practi *(online/digital) *	ical Course) (internship)	

Examination Method Course: 2D Materials report Description: written report

Module PHM-0228: Symmetry concepts and their applications in solid state physics and materials science	6 ECTS/LP
Symmetry concepts and their applications in solid state physics and materials science	
Version 1.0.0 (since WS18/19)	I
Person responsible for module: Prof. Dr. István Kézsmárki	
Deisenhofer, Joachim, Dr.	
Contents:	
The topical outline of the course is as follows:	
 Introduction and common examples 	
o Motivating examples	
o Polar and axial vectors and tensors	
o Spatial and temporal symmetries and charge conjugation	
o Symmetries of measurable quantities and fields	
o Symmetries of physical laws (classical and quantum)	
o Conservation laws (linear and angular momentum, energy, etc.)	
o Symmetry of measurement configurations (reciprocity, etc.)	
Neumann principle	
o Linear response theory and Onsager relations	
o Applications to vector and tensor quantities: electric and magnetic di ferroelectricity, ferromagnetism, piezoelectricity and magnetoelectricity in crysta media (sound and light)	•
Symmetry allowed energy terms	
o On the level of classical free energy: Polar, nematic and magnetic or	der parameters (Landau expansion)
o On the level of Hamiltonians: Molecular vibrations, crystal field poter	itial, magnetic interactions
Symmetry of physical states	
o Spatial inversion and parity eigenstates	
o Discrete translations and the Bloch states	
 Spontaneous symmetry breaking upon phase transitions (Landau theory) 	1
Outlook: Symmetry guides for skyrmion-host materials, multiferroic comp	
Learning Outcomes / Competences:	· · · · · · · · · · · · · · · · · · ·
The course aims at providing insights into the simple use of symmetry concepts material properties without performing detailed calculations. On the same basis minimal plans for experiments using the symmetry of the studied materials or v symmetry of materials from the output of experiments.	, it gives some guides how to make
Workload:	
Total: 180 h	
60 h (attendance)	
60 h exam preparation (self-study) 60 h studying of course content (self-study)	
Conditions: Background in basic quantum mechanics is required.	

Frequency: nach Bedarf WS und SoSe	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Symmetry concepts and their applications in solid state physics and materials science Mode of Instruction: lecture

Lecturers: Prof. Dr. István Kézsmárki Language: English Contact Hours: 3

ECTS Credits: 6.0

Examination

Symmetry concepts and their applications in solid state physics and materials science

oral exam / length of examination: 30 minutes

Parts of the Module

Part of the Module: Symmetry concepts and their applications in solid state physics and materials science (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Module PHM-0223: Method Cours ting Method Course: Tools for Scientific Cou	-	8 ECTS/LP
Version 1.1.0 (since SoSe18) Person responsible for module: Prof. D	r. Gert-Ludwig Ingold	
Contents: Important tools for scientific computing students. As far as tools depend on a p discussed include:		
 numerical libraries like NumPy ar visualisation of numerical results use of a version control system li testing of code profiling documentation of programs 	nd SciPy ke git and its application in collaborative	e work
 They are able to visualize the res The students know examples of r The students know methods for c run-time problems. The students know a distributed visualized students know a distributed studentstudents know a distributed st	sults and to adequately document their numerical libraries and are able to apply quality assurance like the use of unit test version control system and are able to cal experience in a collaborative project	y them to solve scientific problems. sts. They know techniques to identify use it in a practical problem.
Remarks:		
The number of students will be limited t	io 12.	
Workload: Total: 240 h 60 h studying of course content (self-st 90 h (attendance) 30 h preparation of presentations (self- 60 h preparation of written term papers	study)	
Conditions: Knowledge of the programming langua taught in the module PHM-0041 "Einfüł Physiker und Materialwissenschaftler".		Credit Requirements: Bestehen der Modulprüfung
Frequency: irregular	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English / German Contact Hours: 2	Tools for Scientific Computing	

Learning Outcome:

- The students know the numerical libraries NumPy and SciPy and selected tools for the visualization of numerical results.
- The students know fundamental techniques for the quality assurance of programs like the use of unit tests, profiling and the use of the version control system git. They are able to adequately document their code.

Contents:

- numerical libraries NumPy and SciPy
- graphics with matplotlib
- · version control system Git and workflow for Gitlab/Github
- unit tests
- profiling
- · documentation using docstrings and Sphinx

Literature:

• A. Scopatz, K. D. Huff, Effective Computation in Physics (O'Reilly, 2015)

Part of the Module: Method Course: Tools for Scientific Computing (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Learning Outcome:

- The students are capable of solving a physical problem of some complexity by means of numerical techniques and to visualize the results.
- They have gained some experience in the application of methods for quality assurance of their code and are able to appropriately document their programs.
- The students are able to work in a team and know how to make use of tools like Gitlab/Github.
- The students are able to present the status of their work, to critically assess it and to accept suggestions from others.

Contents:

The tools discussed in the lecture will be applied to specific scientific problems by small teams of 2-3 students under supervision. The teams regularly inform the other teams in oral presentations on their progress, the tools employed as well as encountered problems and their solution.

Examination

Method Course: Tools for Scientific Computing

report / work period for assignment: 4 weeks

Description:

The requirement for credit points is based on a scientific programming project carried out in a small team of 2-3 students. The work will be judged on the basis of a joint final report and the contributions of the individual students as documented in the team's Gitlab project. The final report should contain an explanation of the scientific problem and its numerical implementation as well as a presentation of results. The code should be appropriately documented and tested.

Module PHM-0224: Method Cours mulation Method Course: Theoretical Concepts	se: Theoretical Concepts and Si- and Simulation	8 ECTS/LF
Version 1.0.0 (since WS15/16) Person responsible for module: Prof. D	r. Liviu Chioncel	
	ods (computational algorithms) for class . The following common applications wil	
 Monte-Carlo integration, stochas Feynman path integrals: the conr Oder and disorder in spin system 	nection between classical and quantum	systems
The students are able to present	ining numerical solutions to problems to (graphically), discuss and analyze the r formulatind and carrying out a collabora	esults
Remarks: The number of students will be limited t	to 8.	
Workload: Total: 240 h 90 h preparation of presentations (self- 60 h preparation of written term papers 60 h studying of course content (self-st 90 h (attendance)	(self-study)	
Conditions: Knowledge of the programming langua taught in the modul PHM-0041. Requir in physics: Classical Mechanics (Newto Thermodynamics and Quantum Mecha	ements to understand basic concepts on, Lagrange), Electrodynamics,	Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination	

Parts of the Module

Part of the Module: Method Course: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

Contents:

Concepts of classical and quantum statistical physics:

- the meaning of sampling, random variables, ergodicity
- equidistribution, pressure, temperature
- · path integrals, quantum statistics, enumeration, cluster algorithms

Literature:

- 1. Werner Krauth, Algorithms and Computations (Oxford University Press, 2006)
- 2. R. H. Landau, A Survey of Computational Physics (Princeton Univ. Press, 2010)

Part of the Module: Method Course: Theoretical Concepts and Simulation (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Contents:

see above

Literature:

see above

Examination

Method Course: Theoretical Concepts and Simulation

report / work period for assignment: 4 weeks

Description:

The requirement for the credit points is based on a programming project carried out in a team of 2-3 students. The final report contains the formulation and a theoretical introduction into the problem, the numerical implementation, and the presentation of the results.

	ctronics for Physicists and Materi	6 ECTS/LP
als Scientists Analog Electronics for Physicists and	I Materials Scientists	
Version 1.0.0 (since WS15/16)		
Person responsible for module: Andre	eas Hörner	
Contents:		
1. Basics in electronic and electric	cal engineering	
2. Quadrupole theory		
3. Electronic Networks		
4. Semiconductor Devices		
5. Implementation of transistors		
6. Operational amplifiers		
 Optoelectronic Devices Measurement Devices 		
Learning Outcomes / Competences The students:	δ.	
	s and phenomena of electronic and elec	trical angineering for the use in the Lab
	n, measuring and control technology, ar	trical engineering for the use in the Lab,
	working on circuit problems. They can c	-
Workload:		
Total: 180 h		
20 h studying of course content using	provided materials (self-study)	
20 h studying of course content using		
	igh exercises / case studies (self-study)	
60 h lecture and exercise course (atte	endance)	
Conditions:		
none		
	Recommended Semester:	Minimal Duration of the Module:
	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
none Frequency: each winter semester Contact Hours:	Recommended Semester: Repeat Exams Permitted:	
Frequency: each winter semester Contact Hours:		
Frequency: each winter semester Contact Hours:	Repeat Exams Permitted:	
Frequency: each winter semester Contact Hours: 4	Repeat Exams Permitted: according to the examination	
Frequency: each winter semester Contact Hours: 4 Parts of the Module	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each winter semester Contact Hours: 4 Parts of the Module	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6.0	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6.0 Learning Outcome: see module description	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6.0 Learning Outcome:	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Analog Electro Mode of Instruction: lecture + exerc Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6.0 Learning Outcome: see module description Contents:	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]

Analog Electronics for Physicists and Materials Scientists (lecture + exercise)

*(online/digital) *

Examination

Analog Electronics Analog Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Analog Electronics for Physicists and Materials Scientists

Description:

Ausnahmefall Wintersemester 2020: Klausur (90 Minuten)

Module PHM-0226: Digital Electi		
als Scientists	ronics for Physicists and Materi-	6 ECTS/LP
Digital Electronics for Physicists and N	Materials Scientists	
•		
Version 1.1.0 (since WS15/16) Person responsible for module: Andre	as Hörner	
Contents:		
1. Boolean algebra and logic gates		
 Digital electronics and calculation 		
3. Converters (Analog – Digital, Dig	-	
4. Principle of digital memory and	• •	
5. Microprocessors and Networks		
Learning Outcomes / Competences	:	
The students:		
 know the basic terms, concepts 	and phenomena of electronic and electri	cal engineering for the use in the Lab,
-	, measuring and control technology and	
 have expertise in independent w 	vorking on circuit problems. They develop	easy digital circuits and program
microprocessors		
Workload:		
Total: 180 h		
80 h studying of course content throug	gh exercises / case studies (self-study)	
20 h studying of course content using	provided materials (self-study)	
20 h studying of course content using	literarture (self-study)	
60 h lecture and exercise course (atte	ndance)	
Conditions:		
none		
none Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
Frequency: each summer semester		Minimal Duration of the Module: 1 semester[s]
Frequency: each summer semester Contact Hours:	Repeat Exams Permitted:	
Frequency: each summer semester	Repeat Exams Permitted: according to the examination	
Frequency: each summer semester Contact Hours:	Repeat Exams Permitted:	
Frequency: each summer semester Contact Hours:	Repeat Exams Permitted: according to the examination	
Frequency: each summer semester Contact Hours: 4 Parts of the Module	Repeat Exams Permitted: according to the examination	1 semester[s]
Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Digital Electronic	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Digital Electron Mode of Instruction: lecture + exercise	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Digital Electroni Mode of Instruction: lecture + exercis Lecturers: Andreas Hörner Language: English	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Digital Electron Mode of Instruction: lecture + exercise Lecturers: Andreas Hörner Language: English Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Digital Electroni Mode of Instruction: lecture + exercis Lecturers: Andreas Hörner Language: English	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Digital Electron Mode of Instruction: lecture + exercise Lecturers: Andreas Hörner Language: English Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Digital Electroni Mode of Instruction: lecture + exercise Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6.0	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Digital Electron Mode of Instruction: lecture + exercise Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6.0 Learning Outcome:	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Digital Electronic Mode of Instruction: lecture + exercise Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6.0 Learning Outcome: see module description	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Digital Electron Mode of Instruction: lecture + exercise Lecturers: Andreas Hörner Language: English Contact Hours: 4 ECTS Credits: 6.0 Learning Outcome: see module description Contents:	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]

Examination

Digital Electronics Digital Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Description:

Ausnahmefall SoSe 2020: schriftliche Prüfung

Module PHM-0150: Method Course Matter Method Course: Spectroscopy on Cond		8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Dr. Ste		J
Contents: Dielectric Spectroscopy [8] • Methods • Cryo-techniques • Measurement quantities • Relaxation processes • Dielectric phenomena		
 Ferroelectric Materials [7] Mechanism of ferroelectric polari Hysteresis loop measurements Dielectric spectroscopy 	zation	
Glassy Matter [8] • Introduction • Glassy phenomena • Dielectric spectroscopy		
 Multiferroic Materials [7] Introduction Microscopic origins of multiferroid Pyrocurrent measurements Dielectric spectroscopy 	Sity	
are instructed in experimental meare trained in planning and perfordata,	i dielectric spectroscopy and the phenor ethods for the investigation of the dielect rming complex experiments. They learn n experimental solid state physics, inclue nework of models and theories.	ric properties of condensed matter, to evaluate and analyze the collected
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h		
Conditions: Recommended: basic knowledge in so physics of glasses and supercooled liq		Credit Requirements: written report on the experiments (editing time 2 weeks)
Frequency: irregular (usu. winter semester)	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Spectroscopy on Condensed Matter

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

- N.W. Ashcroft, N.D. Mermin, Festkörperphysik (Oldenbourg)
- Ch. Kittel, Einführung in die Festkörperphysik (Oldenbourg)
- C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization (Elsevier)
- J. R. Macdonald, Impedance Spectroscopy (Wiley)
- H. Scholze, Glas (Springer)
- S.R. Elliott, Physics of Amorphous Materials (Longman)
- R. Zallen, The Physics of Amorphous Solids (Wiley)

Assigned Courses:

Method Course: Spectroscopy on Condensed Matter (lecture)

**

Part of the Module: Method Course: Spectroscopy on Condensed Matter (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Spectroscopy on Condensed Matter (Practical Course) (internship)

*(online/digital) *

Examination

Method Course: Spectroscopy on Condensed Matter

written exam / length of examination: 120 minutes

Examination Prerequisites:

Method Course: Spectroscopy on Condensed Matter

Module PHM-0169: Masterthesi Masterthesis	S	26 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Dirk Volkmer	
Contents: According to chosen topic		
Remarks: The master's thesis will be offered in	SoSe 2020 as soon as the current situa	ation allows.
COMPULSORY MODULE		
Workload: Total: 780 h 260 h studying of course content usir 520 h lecture and exercise course (a		
Conditions: To begin with the Masterthesis students must have acquired 72 CP from modules consisting of the modulgroups 1a - 5.		Credit Requirements: written thesis
Recommended: according to the res	pective advisor	
Frequency: each semester Siehe Bemerkungen	Recommended Semester: from 4.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 1	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Masterthesis Language: English		
Learning Outcome: see description of module		
Contents: see description of module		
Examination Masterthesis Master's thesis		

Examination Prerequisites:

Masterthesis

Module PHM-0170: Colloquium Colloquium		4 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof	Dr. Dirk Volkmer	
Contents: According to the respective Masterth	esis	
Remarks: The Colloquium will be offered in So COMPULSORY MODULE	Se 2020 as soon as the current situation	n allows.
Workload: Total: 120 h 40 h studying of course content usin 80 h lecture and exercise course (att		
Conditions: submission of the masterthesis		
Frequency: each semester Siehe Bemerkungen	Recommended Semester: from 4.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 1	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Colloquium Language: English		
Learning Outcome: see description of module		
Contents: see description of module		
Examination Colloquium seminar / length of examination: Examination Prerequisites:	20 minutes	

Colloquium